
msqc.uni-frankfurt.de

Introduction and Motivation
Generating quantum computer instructions, even when using an
intermediate representation such as OpenQASM, becomes
increasingly tedious and time-consuming for larger ansätze.

We propose an open-source library implementing:
• An algorithm taking ansätze in Pauli string representation as

input, commonly used for ansätze and Hamiltonians
• A classical parallel approach to further speed up the process

Pauli string input representation
• Any ansatz can be expressed using a suitable transformation,

since Pauli and identity operations form a complete basis set
• Pauli string representation is much shorter, single character per

operation, than corresponding OpenQASM representation
• Parameterized rotations and CNOT gates form a universal gate

set, which is used to implement the ansatz

Why parallelization?
• Circuit generation is a possible bottleneck

→ Problem Hamiltonians and ansätze expected to grow with
quantum computing capabilities

• Making use of the available computational resources
→ Quantum computers are expected to be part of larger

supercomputing environments
• Even on personal computers, a lot of computing resources are

idle during quantum computer’s instruction generation

Ease of use
• Library implemented in highly efficient C++
• Made available as Python binding [1], simplifying integration

into existing workflows

Parallelizable Generation Approach
n-qubit operators in an ansatz are of the form 𝑒!"#$𝝈⊗" ∶ 𝝈 ∈
𝜎& , 𝜎' , 𝜎(, 𝐼 , where 𝑐 is the coefficient and 𝜃 the parameter

→ Sandwich parameterized
rotation in the z-basis
between CNOT gates [2]

→ For Pauli operations other
than 𝜎(: Appropriate
rotation of ⁄) * are used
before and after CNOT

• Input (see Fig. 2) encodes all the information
→ Pauli operator string
→ Coefficient
→ Grouping index

Grouping index is used to indicate order and commuting operators
→ Commuting operators can share the same parameter
→ We consider each term separately and

ansätze already in factorized form [3]

Encode each operator, i.e. each line of
the input file, in parallel:

Parallel Implementation Speedup
Investigating the speedup for 100 & 1000 qubits per ansatz

Speedup	for	small	𝑘
• non-identity operations

𝑘 ≤ 4
• (100 qubits) ~1.6

overall speedup
• (1000 qubits) ~1.5

overall speedup
• An increase in

resources leads to
better performance

Speedup for larger 𝑘 (20 cores)
• Workload increases
• Higher qubit

utilization per
operator benefits
most from parallel
execution

→ For 𝑘=32,
execution time
reduces from
~35 sec. to <10 sec.

Conclusion
• Algorithm reduces manual

instruction generation overhead

• Parallel implementation further
improves algorithm’s runtime

• Considering today’s hardware
capabilities, it is not yet
necessary to parallelize the
algorithm
However: We overcome a
potential bottleneck for future
cases

• Parallel algorithm performs best
for large 𝑘

References
1. Cedric Gaberle, (2023) OpenQASM Parsing

Library [Source Code]. https://github.com/msqc-
goethe/QasmParserLibrary/tree/master

2. James D. Whitfield, et al.(2011) Simulation of
electronic structure Hamiltonians using quantum
computers, Molecular Physics, 109:5, 735-750

3. Manpreet Singh Jattana (2022) Applications of
variational methods for quantum computers,
Dissertation, RWTH Aachen University, pp. vii,
160

Contact E-Mails: gaberle@em.uni-frankfurt.de, th.lippert@fz-juelich.de, jattana@em.uni-frankfurt.de

Cedric Gaberle1, Thomas Lippert1,2, Manpreet S. Jattana1,2

1Modular Supercomputing and Quantum Computing, Goethe University Frankfurt am Main, Kettenhofweg 139, 60325 Frankfurt am Main, Germany
2Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany

Streamlined OpenQASM
Circuit Generation

IIIXY 0.5 1
IIXIY 1.2 2
IIXYZ 0.8 3

Fig. 2: Example input file

IIIXY 0.5 1
IIXIY 1.2 2
IIXYZ 0.8 3

𝑇!
𝑇"
𝑇#

OPENQASM 3.0;
…
rx(-pi/2) q[4];
ry(pi/2) q[3];
cx q[3], q[4];
rz(2*0.5*𝜃) q[4];
cx q[3], q[4];
ry(-pi/2) q[3];
rx(pi/2) q[4];
…

Fig. 3: Each line of the input, i.e. operator in an ansatz, is assigned a single thread, executed in parallel,
transforming the Pauli string representation to OpenQASM per operator. Grouping indices ensure the

correct order in the resulting OpenQASM file. Red circles highlight the conversion of one operator.

• Input representation is much more compact than OpenQASM
• Operator OpenQASM representation scales 𝒪(4𝑘 + 1) where 𝑘 is

the number of non-identity operations
à max. 2 rotations and 2CNOT gates per operator

Fig.1: Circuit implementation for
𝒆!𝒊𝜽𝝈𝒙⊗𝝈𝒚

