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ABSTRACT. This paper applies structure preserving doubling methods to solve

the matrix quadratic underlying the recursive solution of linear DSGE models. We

present and compare two Structure-Preserving Doubling Algorithms (SDAs) to

other competing methods – the QZ method, a Newton algorithm, and an iterative

Bernoulli approach – as well as the related cyclic and logarithmic reduction

algorithms. Our comparison is completed using nearly 100 different models from

the Macroeconomic Model Data Base (MMB) and different parameterizations of

the monetary policy rule in the medium scale New Keynesian model of Smets and

Wouters (2007) iteratively. We find that both SDAs perform very favorably relative

to QZ, with generally more accurate solutions computed in less time. While we

collect theoretical convergence results that promise quadratic convergence rates

to a unique stable solution, the algorithms may fail to converge when there

is a breakdown due to singularity of the coefficient matrices in the recursion.

One of the proposed algorithms can overcome this problem by an appropriate

(re)initialization. This SDA also performs particular well in refining solutions of

different methods or from nearby parameterizations.
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1. INTRODUCTION

The major computational hurdle in the solution of linear DSGE models is the

solution of the associated matrix quadratic equation - the current standard in the

literature is to use a generalized Schur or QZ decomposition (Moler and Stewart,

1973; Golub and van Loan, 2013) to solve this equation. The applied mathematics

literature has developed numerous different methods to solve quadratic matrix

equations, but many of these have yet to be applied to DSGE models. We fill

part of that gap, collecting and developing two versions of a Structure-Preserving

Doubling Algorithm (SDA)1 and applying them to the solution of linear DSGE

models. We show that these methods cannot only be used to solve DSGE models

successfully, but also that their convergence properties enable them to perform

favorably relative to QZ-based methods. This is accomplished by our doubling

algorithms combining the asymptotic quadratic convergence rate of, say, Meyer-

Gohde and Saecker’s (2022) Newton based methods and the convergence to the

desired stable solution like Meyer-Gohde (2023b).

Doubling algorithms are certainly not unknown to economists (see, e.g., Hansen

and Sargent, 2014, Chapter 3.6). Anderson and Moore (1979) consider doubling

algorithms to solve the Riccati equations occuring in optimal linear filtering exer-

cises. Building on this, Anderson, McGrattan, Hansen, and Sargent (1996, Section

10, p. 224) use doubling algorithms to receive a conditional log-likelihood func-

tion for linear state space models (see also Harvey, 1990, Chapter 3, p. 119,129).

Furthermore, McGrattan (1990) as well as Anderson, McGrattan, Hansen, and

Sargent (1996) apply doubling algorithms to the Riccati and Sylvester equations

in the unknown matrices of the linear solution to LQ optimal control problems

in economics. As our class of models as defined by Dynare (Adjemian, Bastani,

Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011) (henceforth Dynare) in-

cludes and expands on this class of models, our approach here can be seen as

an extension, specifically to Anderson, McGrattan, Hansen, and Sargent’s (1996)

work.2 More closely related is the application to Riccati equations (see Poloni

1See Huang, Li, and Lin (2018) for a book length treatment.
2Note that a doubling algorithm is also used in Dynare in the algorithm disclyap_fast.m for

solving Lyapunov equations in the variance-covariance matrices of linear state space models.
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(2020) for an accessible introduction to doubling algorithms for Riccati equations),

a link between the solution of Riccati equations and the matrix quadratic we solve

is noted explicitly by Higham and Kim (2000) and Bini, Meini, and Poloni (2008)

for example - both are quadratic equations in a matrix unknown, but with different

structures. Chiang, Chu, Guo, Huang, Lin, and Xu (2009), however, presents ex-

plicit results for matrix polynomials with doubling methods - specifically structure

preserving doubling methods, see Huang, Li, and Lin (2018) - and connects these

algorithms to reduction algorithms (Latouche and Ramaswami’s (1993) logarithmic

and Bini and Meini’s (1996) cyclic) that are undocumented algorithms available

in Dynare.3 Beyond relating these algorithms using unified notation, we provide

iterative capabilities (i.e., updating or refining some initialized solution) using Bini

and Meini (2023) that allow us to operate on a starting value for a solution to the

matrix quadratic for the first SDA, First Standard Form (SF1). We show, however,

that while this may reduce the computation time, the asymptotic solution of the

second SDA, Second Standard Form (SF2), is unaffected.

We engage in a number of experiments to compare the algorithms to QZ-based

methods4, Dynare’s implementation of Latouche and Ramaswami’s (1993) logarith-

mic reduction algorithm and Bini and Meini’s (1996) cyclic reduction algorithms,

Meyer-Gohde and Saecker’s (2022) Newton algorithms, and Meyer-Gohde’s (2023b)

Bernoulli methods following exactly the latter’s experiments to ensure comparabil-

ity. We begin by comparing the methods in the Smets and Wouters (2007) model of

the US economy - both at the posterior mode and in solving for different parameter-

izations of the Taylor rule. In the latter, we move through a grid of different values

of the reaction of monetary policy to inflation and output. Whereas the QZ and

reduction methods have to recalculate the entire solution at each new parameter

combination, the iterative implementations of the SDA like Meyer-Gohde and

Saecker’s (2022) Newton and Meyer-Gohde’s (2023b) Bernoulli algorithms can
3They, as do others in the literature on doubling algorithms, link the matrix quadratic to Riccati

equations in the context of quasi birth death models, whose matrices are subject to more strict

assumptions than ours -e.g., nonnegative as components of a transition probability matrix, see also

Poloni (2020).
4We use Dynare’s (Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011)

implementation of the QZ method, documented in Villemot (2011), for comparison.
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initialize using the solution from the previous, nearby parameterization. As the

parameterizations get closer together, the advantage in terms of computation time

increases significantly, while the accuracy (measured by Meyer-Gohde’s (2022)

practical forward error bounds) remains unaffected. We show that one of the dou-

bling algorithms profits from this effect, while the other does not - this is consistent

with our theoretical results that this particular doubling algorithm converges to

the same solution regardless of its initialization.

We then compare the different methods using the models in the Macroeconomic

Model Data Base (MMB) (see Wieland, Cwik, Müller, Schmidt, and Wolters, 2012;

Wieland, Afanasyeva, Kuete, and Yoo, 2016), both initializing with a zero matrix

(or imply running Latouche and Ramaswami’s (1993) logarithmic reduction and

Bini and Meini’s (1996) cyclic reduction algorithms) and as solution refinement

for iterative implementations (i.e., initializing the iterative methods with the QZ

solution). We find that the reduction and doubling methods provide useable alter-

natives to the standard QZ. The cyclic reduction algorithm suffers from unreliable

convergence to the stable solution and the doubling algorithms perform more

reliably than both the reduction methods, providing higher accuracy at frequently

lower cost than alternatives including QZ. While each of the two doubling algo-

rithms have their relative advantages as unconditional solution methods, one is

particularly successful as a solution refinement algorithm. This algorithm, con-

sistent with the grid experiment in the Smets and Wouters (2007) model, reliably

provides large increases in accuracy at low additional computation costs - exactly

what would be demanded of such an algorithm.

The remainder of the paper is organized as follows. Section 2 lays out the

general DSGE model class. Section 3 presents the structure-preserving doubling

algorithm. In section 4, we consider practical and theoretical aspects like the

choice of initial value, solvability, accuracy and convergence. In section 5, we

investigate the properties of the outlined algorithm using the suite of models from

the MMB. Finally, section 6 concludes.
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2. PROBLEM STATEMENT

The standard set of numerical solution packages for dynamic stochastic macroe-

conomic models5 all analyze models that can generally be brought into the following

nonlinear functional equation

0= E t[ f (yt+1, yt, yt−1,εt)] (1)

The ny-dimensional vector-valued function f :Rny×Rny×Rny×Rne →Rny comprises

the conditions (first order conditions, resource constraints, market clearing, etc.)

that characterize the model; the endogenous variables yt ∈Rny are a vector of size

ny ; and the vector of ne exogenous shocks are contained in εt ∈Rne , where ny and

ne are positive integers (ny,ne ∈N) and εt has a known mean zeros distribution.

The solution to the model (1) is the unknown function

yt = y(yt−1,εt), y :Rny+ne →Rny (2)

that maps states, yt−1 and εt, into endogenous variables, yt. A closed form for (2)

is generally not available and we must then find an approximation. One point in

the solution, the deterministic steady state, y ∈Rny a vector such y = y(y,0) and

0 = f (y, y, y,0) can often be solved for, be it analytically or numerically, and this

steady state provides a point around which local solutions can be expanded.

The linear, or first-order, approximation of (1) at the steady state gives

0= AE t [yt+1]+Byt +Cyt−1 +Dεt (3)

where A, B, C, and D are the derivatives of f in (1) evaluated at the steady state

and the y’s in (3) now, reusing notation, are the (log) deviations of the endogenous

variables from their steady states, y.

The solution to the linearized model (3) is a linear solution in the form, following

(2),

yt = P yt−1 +Q εt (4)

5E.g., Dynare (Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011),

Gensys (Sims, 2001), (Perturbation) AIM (Anderson and Moore, 1985; Anderson, Levin, and

Swanson, 2006), Uhlig’s Toolkit (Uhlig, 1999) and Solab (Klein, 2000)
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which is a recursive solution that expresses yt as a function of its own past, yt−1,

and the shocks, εt.

Using our linear solution (4), it yields through substitution into (3) - and recog-

nizing that the expectation E t [εt+1]= 0 is known - the following two equations

0= AP2 +BP +C, 0= (AP +B)Q+D (5)

With the former solution being quadratic with potentially multiple solutions, a

selection criteria has to be used and generally a unique (semi) stable solution P is

sought by the literature, that is a P with all its eigenvalues inside the open unit

circle. As Lan and Meyer-Gohde (2014) prove the latter can be uniquely solved for

Q if such a P can be found, our focus will be the former, the unilateral quadratic

matrix equations (UQME).

In the following we show how to solve for P in (5) using structure-preserving

doubling algorithms.

3. DOUBLING METHODS FOR LINEAR DSGE MODELS

In this section we present two doubling algorithms to solve the UQME (5) for

a unique (almost) stable solution P, which rely on the so-called First Standard

Form (SF1) and Second Standard Form (SF2), respectively. Further we will show

that the latter is closely related to the Cyclic and Logarithmic Reduction algorithm

implemented in Dynare.

To illustrate doubling methods and build intuition, consider first the calculation

of the geometric series

x =
∞∑
j=0

β j,
∣∣β∣∣< 1 (6)

The solution x can be expressed as the limit of the partial sum

x = 1
1−β = lim

k→∞
xk, xk =

k∑
j=0

β j (7)

and x can be recovered by iterating on

xk = 1+βxk−1, k ≥ 0, x−1 = 0 (8)



SOLVING LINEAR DSGE MODELS WITH STRUCTURE PRESERVING DOUBLING METHODS 7

alternatively, we can use a doubling algorithm. Consider the 2k−1’th partial sum

x2k−1 =
2k−1∑
j=0

β j = 1+β+β2 + . . .+βk−1︸ ︷︷ ︸
k terms

+βk + . . .+β2k−1︸ ︷︷ ︸
k terms

=
k−1∑
j=0

β j +βk
k−1∑
j=0

β j (9)

Iterating on

wk+1 = wk +αkwk, αk+1 =α2
k, k ≥0, w0 = 1, α0 =β (10)

Gives for the first several terms

w0 = 1︸︷︷︸
x0

, w1 = w0 +α0w0 = 1+β︸ ︷︷ ︸
x1

, α1 =β2 =β21
(11)

w2 = w1 +α1w1 = 1+β+β2 (
1+β)= 1+β+β2 +β3︸ ︷︷ ︸

x3

, α2 =β4 =β22
(12)

w3 = w2 +α2w2 = 1+β+β2 +β3 +β4 (
1+β+β2 +β3)= 7∑

j=0
β j

︸ ︷︷ ︸
x7

, α3 =β8 =β23
(13)

the relation wk = x2k−1 and the factor 2k gives the method its name. Clearly wk

will converge more quickly in k to x than xk.

In terms of a vector space, we can define xk via 1

xk


︸ ︷︷ ︸

Xk

=
1 0

1 β


︸ ︷︷ ︸

S

 1

xk−1

 (14)

with
(
1 x−1

)′
=

(
1 0

)′
. We can either iterate on the foregoing 2k times to recover

x2k−1, or look for a doubling approach

X2k−1 = S2k
X−1 = S2k−1

S2k−1
X−1 (15)

S is lower triangular and hence so is S2k
. If we can find a doubling approach that

preserves this structure, say,

S2k =
 1 0

ek fk

 (16)

then we can reduce the difficulty of the problem significantly, as the structure

enables us to define the recursion in the entries ek and fk instead of S2k
in its
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entirety. From this structure, it follows that

S2k = S2k−1
S2k−1 =

 1 0

ek−1 fk−1

 1 0

ek−1 fk−1

=
 1 0

ek−1 + fk−1ek−1 f 2
k−1

 (17)

which gives the recursions for the structure preserving doubling algorithm as

fk = f 2
k−1, ek = ek−1 + fk−1ek−1 (18)

and again we have a doubling in wk = ek + fkwk−1 as wk = x2k−1 with the initial

conditions w−1 = 0, f0 =β, and e0 = 1. Notice that while the key theoretical insight

is formulating a doubling approach to Sk, i.e., S2k
, the key computational insight is

the structure, here lower triangularity, that enables to find recursions in elements

of S2k
, namely ek and fk, instead of S2k

in its entirety.

3.1. Matrix Quadratics, Pencils, QZ, and Doubling

To enable our doubling approach, we will first express the UQME in (5) as

a subspace problem by forming the first companion linearization of the matrix

quadratic problem (Hammarling, Munro, and Tisseur, 2013; Meyer-Gohde and

Pigkou, 2023)

A X =BX M (19)

with

X =
 I

P

 A =
0 I

C B

 , B =
I 0

0 −A

 , M = P.

Clearly, any P satisfying (5) is a solution of (19). Further note that the eigenvalues

of M are a subset of the generalized eigenvalues of the matrix pencil A −λB, i.e.,

eig(M )⊂ eig(A0,B0).

Before we address solving (19), we will assume the conditions for the existence

of the unique solvent P are fulfilled, i.e., Blanchard and Kahn’s (1980) celebrated

rank and order conditions.6 We will make one more assumption to be able to prove

6Lan and Meyer-Gohde (2014) and Meyer-Gohde (2022) provide the conditions expressed in

terms of the general class of multivariate models we consider here.
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quadratic convergence later via the corresponding dual equation to the UQME (5)

which is the quadratic equation above “in reverse”

0= CP2
d +BPd + A. (20)

Throughout this paper, we assume with respect to P and Pd that the following

statement is true.

Assumption 1. There exist solvents P and Pd satisfying the UQMEs in (5) and

(20), respectively, such that

ρ(P) := max
λ∈eig(P)

|λ| ≤ 1, ρ(Pd) := max
λ∈eig(Pd)

|λ| ≤ 1, ρ(P) ·ρ(Pd)< 1.

So note that assumption 1 implies the Blanchard and Kahn (1980) rank and

order conditions and is the usual assumption on P, see above. The condition on Pd

in assumption 1 will provide sufficient conditions for quadratic convergence of the

algorithms presented below.

The problem in (19) is numerically an eigenvalue problem and can thus be solved

using the QZ or generalized Schur decompostion of Moler and Stewart (1973). We

will derive the solution by working directly with the linear algebraic problem

instead of dynamic model as is usually done. This should link the more familiar

QZ with the doubling algorithms we will subsequently present. The decompo-

sition provides unitary Q and Z and upper triangular S and T with Q∗BZ = S

and Q∗A Z = T where the eigenvalues of the matrix pencil PBA (z) = Bz−A ,

ρ(PBA ) = ρ(PST) = {
tii/sii, if sii ̸= 0; ∞, if sii = 0; ;, if sii = tii = 0; i = 1, . . . ,2ny

}
,

can be ordered arbitrarily to formT11 T12

0 T22

ws

wu

=
S11 S12

0 S22

ws

wu

P (21)

where Z∗
[
I P ′

]′
=

[
ws′ wu′

]′
. We assume the decomposition is ordered so that

the unstable eigenvalues are in the lower right blocks of S and T (hence S22 and

T22), wherefor the lower block equation gives

T22wu = S22wuP ⇒ wu = T−1
22 S22wuP (22)
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as the eigenvalues of T−1
22 S22 are inside the unit circle and P is a (semi) stable

solvent we can iterate

wu = T−1
22 S22wuP = (

T−1
22 S22

)2 wuP2 = (
T−1

22 S22
) j wuP j →

j→∞
0 (23)

for a unit root stable P. Using the definition of wu

0= wu = Z∗
21 +Z∗

22P ⇒ P =−Z∗
22

−1Z∗
21 = Z21Z−1

11 (24)

where ∗ indicates the complex conjugation of Z that delivers its inverse by virtue

of it being a unitary matrix. The equivalence Z∗
22

−1Z∗
21 =−Z21Z−1

11 follow from the

properties of unitary matrices and Z21Z−1
11 = Q11S−1

11 T11Q−1
11 from the first block

rows of A and B in (19) and upper triangularity of S and T. From Q11S−1
11 T11Q−1

11 ,

it follows that the recursion in P is indeed stable from the ordering of the eigen-

values above, i.e. the eigenvalues of the upper left block of the generalized Schur

decomposition, det (S11λ−T11)= 0, are inside the unit circle.7 So the QZ decom-

position applied to our matric pencil will recover the unique (semi) stable solvent

P if it exists consistent with our assumption 1. Importantly, we did not solve the

problem by working directly with the pencil PBA (z)=Bz−A but first transformed

the problem unitarily with Q and Z.

Analogous to our geometric series, we would also like to find a way to approach

the matrix pencil problem here via a doubling approach. Following Guo, Lin,

and Xu (2006) a transformation Â −λB̂ of a pencil A −λB is called a doubling

transform if

Â =A A , B̂ =BB (25)

for A and B that satisfy

rank
([

A B
])

= 2ny,
[
A B

] A

−B

= 0 (26)

7Meyer-Gohde (2023a) derives this representation for the recursive solution in yt directly. The

parallel derivation here emphasises the equivalence of solving the matrix quadratic in P or for a

recursive solution in yt.
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That is, we will be transforming the problem here as in QZ above, seeking a

structure that amenable to doubling instead of the upper triangularity sought

there.

Such a doubling transformation is eigenspace preserving and eigenvalue squar-

ing (“doubling”) following Guo, Lin, and Xu (2006, Theorem 2.1) or Huang, Li, and

Lin (2018, Theorem 3.1) that we repeat here adapted to our problem

Theorem 1 (Doubling Pencil). Suppose Â −λB̂ is a doubling transformation of

the pencil A −λB. Then, as

A X =BX M (27)

from (19)

Â X = B̂X M 2 (28)

Proof. Starting with (19) and multiplying with A gives

A X =BX M → A A X =A BX M → Â X =A BX M (29)

From
[
A B

] A

−B

= 0 it follows that A B =BA

Â X =A BX M → Â X =BA X M (30)

Then substituting BX M for A X following (19) on the right hand side of the

foregoing gives

Â X =BA X M → Â X =BBX MM → Â X = B̂X M 2 (31)

where we completed the proof by recalling the definition of B̂ □

Following this theorem, we obtain a doubling algorithm for (19) by iterating on

Âk︸︷︷︸
Ak+1

=A kAk, B̂k︸︷︷︸
Bk+1

=BkBk (32)
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initializing with A and B as

A X =BX M (33)

A1X =B1X M 2 (34)

A2X =B2X M 4 (35)

AkX =BkX M 2k
(36)

As above for the geometric series, we seek a structure in A and B such that we

calculate Ak →Ak+1 and Bk →Bk+1 by recursions in elements (here we will settle

for submatrices). In the following two section, we provide exactly such recursions,

First Standard Form and Second Standard Form. Both require we rearrange our

pencil A −λB to conform to the respective structures of the two recursions, as we

now show.

3.2. First Standard Form

Assuming that B is non-singular we receive the primal problem in SF1

A0X =B0X M , (37)

with

A0 =
 E0 0

−X0 I

 := SA , B0 =
I −Y0

0 F0

 := SB, S =
I −B−1

0 B−1

 .

multiplying (19) from the left by S. Note that (19) and (37) are equivalent in

the sense that pencils A −λB and A0 −λB0 share the same set of generalized

eigenvalues, i.e., eig(A ,B)= eig(A0,B0).

The SDA for SF1 recursively computes sequences {Ak}∞k=0, {Bk}∞k=0 with

Ak+1 =
 Ek+1 0

−Xk+1 I

 :=
 Ek (I −Yk Xk)−1 0

−Fk (I − XkYk)−1 Xk I

Ak, (38)

Bk+1 =
I −Yk+1

0 Fk+1

 :=
I −Ek (I −Yk Xk)−1 Yk

0 Fk (I − XkYk)−1

Bk, (39)

such that

AkX =BkX M 2k
. (40)
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A key feature here is that (40) retains SF1 for all k ∈N. Algorithm 1 summarizes

the SDA for the SF1. The intuition here is that under some fairly general pre-

conditions, e.g., Assumption 1, the term BkX M 2k
on the right-hand side of (40)

converges to zero for k →∞, so that consequently Xk converges to P.

Algorithm 1: Structure-Preserving Doubling Algorithm (SF1)

Given: A, B, C, and a convergence criterion ϵ

Set X0, Y0, E0, F0 according to

X0 =−B−1C, Y0 =−B−1A, E0 =−B−1C, F0 =−B−1A

While criterion(Xk) > ϵ do

Set Ek+1 = Ek (I −Yk Xk)−1 Ek

Set Fk+1 = Fk (I − XkYk)−1 Fk

Set Xk+1 = Xk +Fk (I − XkYk)−1 XkEk

Set Yk+1 =Yk +Ek (I −Yk Xk)−1 YkFk

Advance k = k+1

end

Return: Xk

3.3. Second Standard Form

As an alternative to Algorithm 1, Chiang, Chu, Guo, Huang, Lin, and Xu (2009)

show that the UQME (5) can also be solved using a doubling algorithm based on

the eigenvalue problem

A †
0 X † =B†

0X †M , (41)

with

X † =
 I

AP

 , A †
0 =

 E†
0 0

−X †
0 I

 :=
−C 0

0 I

 , B†
0 =

−Y †
0 I

−F†
0 0

 :=
B I

A 0

 ,M = P
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which satisfies the so-called Second Standard Form (SF2). Obviously, again any

P satisfying (5) is also a solution of (41). Note that A −λB and A †
0 −λB†

0 again

share the same set of generalized eigenvalues, i.e., eig(A ,B)= eig(A †
0 ,B†

0).

Similar to Algorithm 1 the SDA for SF2 recursively computes sequences {A †
k }∞k=0,

{B†
k}∞k=0 with

A †
k+1 =

 E†
k+1 0

−X †
k+1 I

 :=
E†

k

(
X †

k −Y †
k

)−1
0

F†
k

(
X †

k −Y †
k

)−1
I

Ak, (42)

B†
k+1 =

−Y †
k+1 I

−F†
k+1 0

 :=
I E†

k

(
X †

k −Y †
k

)−1

0 F†
k

(
X †

k −Y †
k

)−1

Bk, (43)

such that

A †
k X † =B†

kX †M 2k
. (44)

We summarize the SDA for the SF2 in Algorithm 2. Note that compared to

Algorithm 1 the sequence {X †
k}∞k=0 now converges to AP instead of P. However, in

case of convergence we may obtain an P approximately as −(X †
k +B)−1C.

3.4. Cyclic and Logarithmic Reduction

SDAs generate a sequence of matrix pencils, in each step squaring the corre-

sponding eigenvalues. In contrast, Bini and Meini’s (1996) Cyclic Reduction and

Latouche and Ramaswami’s (1993) Logarithmic Reduction, that are already imple-

mented in Dynare, generate sequences of matrix polynomials whose eigenvalues

are squared in each step. In the following we outline the idea of the Cyclic and

Logarithmic Reduction and illustrate the links to the SDA of SF2.8

8For a comprehensive textbook treatment see Bini, Iannazzo, and Meini (2011, Chapter 5.2) and

Bini, Latouche, and Meini (2005, Chapter 7)
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Algorithm 2: Structure-Preserving Doubling Algorithm (SF2)

Given: A, B, C, and a convergence criterion ϵ

Set X †
0, Y †

0 , E†
0, F†

0 according to

X †
0 = 0, Y †

0 =−B, E†
0 =−C, F†

0 =−A

While criterion(X †
k) > ϵ do

Set E†
k+1 = E†

k

(
X †

k −Y †
k

)−1
E†

k

Set F†
k+1 = F†

k

(
X †

k −Y †
k

)−1
F†

k

Set X †
k+1 = X †

k −F†
k

(
X †

k −Y †
k

)−1
E†

k

Set Y †
k+1 =Y †

k +E†
k

(
X †

k −Y †
k

)−1
F†

k

Advance k = k+1

end

Return: −(X †
k +B)−1C

The Cyclic Reduction computes the sequences {Ak}∞k=0, {Bk}∞k=0, {Ck}∞k=0, and

{B̂k}∞k=0 with

Ak+1 =−Ak B−1
k Ak, A0 = A, (45)

Bk+1 = Bk − Ak B−1
k Ck −Ck B−1

k Ak, B0 = B, (46)

Ck+1 =−Ck B−1
k Ck, C0 = C, (47)

B̂k+1 = B̂k − Ak B−1
k Ck B̂0 = B. (48)

Using a divide-and-conquer strategy one can show that the Cyclic Reduction

defines a sequence of UQMEs with

0= AkM 2
k +BkMk +Ck. (49)

where Mk =M 2k
. Moreover, we may state that

0= AkMkM + B̂kM +C, (50)
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To see this note that both (49) and (50) will clearly hold for k = 0. Further, assuming

that (49) and (50) hold for an arbitrary k ≥ 0, we may multiply (49) from the right

by M , Mk and M 2
k , respectively, and receive

0= AkM 2
k M +BkMkM +CkM , (51)

0= AkM 3
k +BkM 2

k +CkMk, (52)

0= AkM 4
k +BkM 3

k +CkM 2
k . (53)

If we now add CkMk, AkMkM , and AkM 3
k to (49), (51), and (53) multiplied by

−CkB−1
k , −AkB−1

k , and −AkB−1
k , respectively, we get

CkMk =−CkB−1
k Ak M 2

k −CkB−1
k Ck, (54)

AkMkM =−AkB−1
k Ak M 2

k M − AkB−1
k Ck M , (55)

AkM 3
k =−AkB−1

k Ak M 4
k − AkB−1

k Ck M 2
k . (56)

Finally, substituting (54) and (56) in (52) as well as (55) in (50)

0= Ak+1 M 2
k+1 +Bk+1 Mk+1Ck+1, (57)

0= Ak+1 Mk+1M + B̂k+1M +C. (58)

Hence, (49) and (50) hold in k+1 as well. Furthermore, assuming that lim
k→∞

B̂−1
k

exists and that lim
k→∞

B̂−1
k AkMkM = 0 we can express the solvent P as

P =− lim
k→∞

B̂−1
k C. (59)

As pointed out by Bini, Iannazzo, and Meini (2011, pp. 167) and Chiang, Chu,

Guo, Huang, Lin, and Xu (2009, pp. 236) the SDA for SF2 is connected to the Cyclic

Reduction (Algorithm 3). In detail, we can show via induction that

B̂k = B+ X †
k, Bk = X †

k −Y †
k , Ck =−E†

k, Ak =−F†
k,

for all k ≥ 0. Hence, Algorithms 2 and 3 are theoretically equivalent.

Another algorithm already implemented in Dynare is the Logarithmic Reduction

by Latouche and Ramaswami (1993), which uses the same divide-and-conquer

strategy as the Cyclic Reduction to obtain {Hk}∞k=0, {Lk}∞k=0, {Ĥk}∞k=0, and {L̂k}∞k=0
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Algorithm 3: Cyclic Reduction

Given: A, B, C, and a convergence criterion ϵ

Set A0, B0, C0, and B̂0 according to

A0 = A, B0 = B, C0 = C, B̂0 = B

While criterion(B̂k) > ϵ do

Set Ak+1 =−AkB−1
k Ak

Set Bk+1 = Bk − AkB−1
k Ck −CkB−1

k Ak

Set Ck+1 =−CkB−1
k Ck

Set B̂k+1 = B̂k − AkB−1
k Ck

Advance k = k+1

end

Return: −B̂−1
k C0

with

Hk+1 = (I −HkLk −LkHk)−1 H2
k, H0 =−B−1A (60)

Lk+1 = (I −HkLk −LkHk)−1 L2
k, L0 =−B−1C, (61)

Ĥk+1 = ĤkHk+1, Ĥ0 =−B−1A, (62)

L̂k+1 = L̂k + ĤkLk+1, L̂0 =−B−1C, (63)

that define a sequence of UQMEs with

0= HkM 2
k −Mk +Lk. (64)

Furthermore, analogously to (50) we receive

0= ĤkMk+1 −M + L̂k. (65)

The Logarithmic Reduction is connected to the Cyclic Reduction. As pointed out by

Bini, Latouche, and Meini (2005, Theorem 7.5), we may show via induction that
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for all k ≥ 0

Hk =−B−1
k Ak, Lk =−B−1

k Ck,

so that (64) follows directly from multiplying (49) from the left by −B−1
k . Conse-

quently, there is also a link between Algorithm 2 and the Logarithmic Reduction

(Algorithm 4). In detail, we get for all k ≥ 0 that

Hk =
(
X †

k −Y †
k

)−1
F†

k Lk =
(
X †

k −Y †
k

)−1
E†

k

Note that (65) also follows by induction, where in k = 0 we get (65) directly from

multiplying (5) from the left by B−1. Now, assuming that (65) holds for an arbitrary

k ≥ 0, we get

0= ĤkMk+1 −M + L̂k,

= ĤkHk+1M
2
k+1 + ĤkLk+1 −M + L̂k,

= Ĥk+1M
2
k+1 −M + L̂k+1, (66)

where we can use the fact that from (64) follows that Mk+1 = Hk+1M
2
k+1 +Lk+1.

Similar to the Cyclic Reduction we can express the stable solvent of the the UQME

(5) as

P = lim
k→∞

L̂k, (67)

assuming lim
k→∞

ĤkMk+1 = 0.

We display the Cyclic and the Logarithmic Reduction in Algorithms 3 and 4.

Summarizing, we can state that compared to the doubling algorithm, the reduction

algorithms follow a similar idea by squaring the eigenvalues of matrix polynomials.

Beyond that, abstracting from numerical inaccuracies, we find that for a given

number of iterations SF2 in algorithm 2 and the Cyclic Reduction in algorithm

3 will deliver identical approximation to P. While the Cyclic and Logarithmic

Reduction generate interchangeable sequences of UQMEs ((49) and (64)), the two

algorithms differ in the way in which they recover the approximation to P ((50) and

(65)). Hence, although we can link some quantities computed by the Logarithmic

Reduction to the quantities of the Cyclic Reduction / SF2, we will in general receive

distinct approximations to P.
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Algorithm 4: Logarithmic Reduction

Given: A, B, C, and a convergence criterion ϵ

Set L0, H0, L̂0, Ĥ0 according to

L0 =−B−1C, H0 =−B−1A, L̂0 =−B−1C, Ĥ0 =−B−1A

While criterion(L̂k) > ϵ do

Set Uk = (I −HkLk −LkHk)

Set Lk+1 =U−1
k L2

k

Set Hk+1 =U−1
k H2

k

Set L̂k+1 = L̂k + ĤkLk+1

Set Ĥk+1 = ĤkHk+1

Advance k = k+1

end

Return: L̂k

4. THEORETICAL AND PRACTICAL CONSIDERATIONS

In this section we present theoretical and practical considerations relating to the

doubling methods. In particular we will address the convergence of the algorithms,

the ability to adapt the algorithms to accept initializations for the solution P, and

our measure of accuracy.

4.1. Convergence

A major advantage of SDAs – regardless of a particular starting value – is

that they provide quadratic convergence at relatively low computational cost per

iteration. We establish sufficient conditions for quadratic convergence in the

following theorem.

Theorem 2 (Convergence). Suppose P and Pd exist and satisfy Assumption 1.

Then following statements are true.
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(1) If the sequences {Xk}∞k=0, {Yk}∞k=0, {Ek}∞k=0, and {Fk}∞k=0 are well defined, i.e.,

all the inverses exist during the doubling iteration process, Xk converges to

P quadratically, and moreover, limsup
k→∞

∥Xk −P∥1/2k ≤ ρ(P) ·ρ(Pd).

(2) If the sequences {X †
k}∞k=0, {Y †

k }∞k=0, {E†
k}∞k=0, and {F†

k}∞k=0 are well defined, i.e.,

all the inverses exist during the doubling iteration process, X †
k converges to

AP quadratically, and moreover, limsup
k→∞

∥X †
k − AP∥1/2k ≤ ρ(P) ·ρ(Pd).

(3) If the sequences {Lk}∞k=0, {Hk}∞k=0, {L̂k}∞k=0, and {Ĥk}∞k=0 are well defined, i.e.,

all the inverses during the Logarithmic Reduction exist, L̂k converges to P

quadratically, and moreover, limsup
k→∞

∥L̂k −P∥1/2k ≤ ρ(P) ·ρ(Pd).

Proof. See the appendix. □

Note that Theorem 2 also applies to the cyclic reduction presented in Algorithm

3, since it is equivalent to the SDA for SF2. Consequently, under Assumption

1 Algorithms 1 to 4 will all converge quadratically to the unique (semi) stable

solution P.

4.2. Initial guess

A disadvantage of SDAs is that numerical inaccuracies can propagate from

iteration to iteration, e.g., if the matrices to be inverted are not well conditioned.

In the context of discrete algebraic Riccati equations (DAREs), Mehrmann and

Tan (1988) show that such a defection of the approximate solution again satisfies a

DARE. As a result, after solving a DAREs, one can solve the associated DAREs

of the approximation error to increase the overall accuracy. Following this idea

Bini and Meini (2023), show how to incorporate an initial guess to Algorithm 1 by

means of an equivalence transformation of the pencil A −λB. Huang, Li, and Lin

(2018) discuss similar transformations for algebraic Riccati equations (AREs) in

general.

In detail, we can introduce an initial guess by transforming the eigenvalue

problem (19) to

Â X̂ = B̂ X̂ M (68)
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with

X̂ :=
 I

P̂

 Â :=A

 I 0

P0 I

 , B̂ :=B

 I 0

P0 I

 ,

where P0 is the initial guess such that P = P̂ +P0. Assuming that B+ AP0 has full

rank we then may multiply Â and B̂ by

Ŝ =
 (B+ AP0)−1 B − (B+ AP0)−1

I − (B+ AP0)−1 B (B+ AP0)−1


to receive the corresponding problem in SF1, i.e.,

Â0 X̂ = B̂0 X̂ M , (69)

with

Â0 =
 Ê0 0

−X̂0 I

 := ŜÂ , B̂0 =
I −Ŷ0

0 F̂0

 := ŜB̂.

Algorithm 5 summarizes the SDA for SF1 based on an initial guess P0. Note that

a good guess P0 should increase the probability that B+ AP0 is well-conditioned,

since under Assumptions 1 we know that B+AP has full rank (see Lan and Meyer-

Gohde, 2014). In comparison to Algorithm 1 to 3 which are only applicable for

non-singular B, Algorithm 5 can handle situations where B is singular, provided

we can determine a matrix P0 such that B+ AP0 is non-singular.9

9Chiang, Fan, and Lin (2010) use a similar technique to solve DAREs with singular transition

matrices.
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Algorithm 5: Structure-Preserving Doubling Algorithm (SF1) - with initial

guess

Given: A, B, C, P0 and a convergence criterion ϵ

Set X̂0, Ŷ0, Ê0, F̂0 according to

X̂0 =−P0 − (B+ AP0)−1C, Ŷ0 =−(B+ AP0)−1A,

Ê0 =−(B+ AP0)−1C, F̂0 =−(B+ AP0)−1A

While criterion(X̂k) > ϵ do

Set Êk+1 = Êk
(
I − Ŷk X̂k

)−1 Êk

Set F̂k+1 = F̂k
(
I − X̂kŶk

)−1 F̂k

Set X̂k+1 = X̂k + F̂k
(
I − X̂kŶk

)−1 X̂kÊk

Set Ŷk+1 = Ŷk + Êk
(
I − Ŷk X̂k

)−1 ŶkF̂k

Advance k = k+1

end

Return: X̂k +P0

Following the idea of Bini and Meini (2023) and applying it to Chiang, Chu, Guo,

Huang, Lin, and Xu’s (2009) Algorithm 2, we take again P0 as the initial guess

such that P = P̂ +P0 and insert this into the UQME (5)

0= A
(
P̂ +P0

)2 +B
(
P̂ +P0

)+C = AP̂2 + AP̂P0 + (AP0 +B) P̂ + AP2
0 +BP0 +C

(70)

This can be written as (41) with

X̂ † =
 I

AP̂

 , Â †
0 =

 Ê†
0 0

−X̂ †
0 I

 :=
 −C 0

AP0 I

 , B̂†
0 =

−Ŷ †
0 I

−F̂†
0 0

 :=
AP0 +B I

A 0

 ,M = P

Algorithm 6 summarizes the SDA for SF2 based on an initial guess P0.

While this is a straightforward application of the initial guess approach of

Algorithm 5 to the SDA for SF2 in Algorithm 2, the algorithm will deliver the

same approximation to P regardless of P0. We summarize this in the following
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Algorithm 6: Structure-Preserving Doubling Algorithm (SF2) - with initial

guess

Given: A, B, C, P0 and a convergence criterion ϵ

Set X̂ †
0, Ŷ †

0 , Ê†
0, F̂†

0 according to

X̂ †
0 =−AP0, Ŷ †

0 =− (AP0 +B) , Ê†
0 =−C, F̂†

0 =−A

While criterion(X̂ †
k) > ϵ do

Set Ê†
k+1 = Ê†

k

(
X̂ †

k − Ŷ †
k

)−1
Ê†

k

Set F̂†
k+1 = F̂†

k

(
X̂ †

k − Ŷ †
k

)−1
F̂†

k

Set X̂ †
k+1 = X̂ †

k − F̂†
k

(
X̂ †

k − Ŷ †
k

)−1
Ê†

k

Set Ŷ †
k+1 = Ŷ †

k + Ê†
k

(
X̂ †

k − Ŷ †
k

)−1
F̂†

k

Advance k = k+1

end

Return: −(AP0 + X̂ †
k +B)−1C

theorem following Huang, Li, and Lin (2018, Theorem 3.32) and the surrounding

discussion.

Theorem 3. Let X †
t , Y †

t , E†
t , and F†

t denote the quantities of the Structure-

Preserving Doubling Algorithm (SF2) and let X̂ †
t , Ŷ †

t , Ê†
t , and F̂†

t be the quantities

of the Structure-Preserving Doubling Algorithm (SF2) with an initial guess P0.

Then we may state that

X̂ †
t = X †

t − AP0,

Ŷ †
t =Y †

t − AP0,

Ê†
t = E†

t ,

F̂†
t = F†

t ,

Hence, both algorithms will eventually return the same approximation for P.
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Proof. We can show the statement by induction. For k = 0 we have

X̂ †
0 =−AP0 = X †

0 − AP0,

Ŷ †
0 =−AP0 −B =Y †

0 − AP0,

Ê†
0 =−C = E†

0,

F̂†
0 =−A = F†

0.

Further, assuming that the claim holds for an arbitrary k ≥ 0 we have(
X̂ †

k − Ŷ †
k

)
=

(
X †

k − AP0 −Y †
k + AP0

)
=

(
X †

k −Y †
k

)
,

and therefore

Ê†
k+1 = Ê†

k

(
X̂ †

k − Ŷ †
k

)−1
Ê†

k

= E†
k

(
X †

k −Y †
k

)−1
E†

k = E†
k+1

F̂†
k+1,= F̂†

k

(
X̂ †

k − Ŷ †
k

)−1
F̂†

k

= F†
k

(
X †

k −Y †
k

)−1
F†

k = F†
k+1

X̂ †
k+1,= X̂ †

k − F̂†
k

(
X̂ †

k − Ŷ †
k

)−1
Ê†

k

= X †
k − AP0 −F†

k

(
X †

k −Y †
k

)−1
E†

k = X †
k+1 − AP0

Ŷ †
k+1,= Ŷ †

k + Ê†
k

(
X̂ †

k − Ŷ †
k

)−1
F̂†

k

=Y †
k − AP0 +E†

k

(
X †

k −Y †
k

)−1
F†

k =Y †
k+1 − AP0.

□

So we see that it is not trivial to generate versions of these algorithms that

enable refinement of arbitrary initializations of the solution. The results above

are both not novel in the sense that they are known for Riccati equations, what

is new is the presentation and proof for the specific case of our UQME. That

we can provide a version of SF1 in Algorithm 5 that can operate on arbitrary

initializations is all the more interesting as it can potentially profit in terms of
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increased accuracy and reduced computation time from initializations that are

close to the stable solvent P that is being sought. We will confirm this and the

result from Theorem 3 that Algorithm 6 does not possess the same potential.

4.3. Accuracy

We use the practical forward error bounds of Meyer-Gohde (2023a) to assess the

accuracy of a computed solution P̂∥∥P − P̂
∥∥

F
∥P∥F︸ ︷︷ ︸

Forward Error

≤

∥∥∥H−1
P̂

vec
(
RP̂

)∥∥∥
2∥∥P̂

∥∥
F︸ ︷︷ ︸

Forward Error Bound 1

≤
∥∥∥H−1

P̂

∥∥∥
2

∥∥RP̂
∥∥

F∥∥P̂
∥∥

F︸ ︷︷ ︸
Forward Error Bound 2

(71)

where the residual of the UQME is RP̂ = AP̂2 +BP̂ +C and HP̂ = Iny ⊗
(
AP̂ +B

)+
P̂ ′⊗ A. A key component in assessing the conditioning of the problem following

is Stewart’s (1971) separation function, see also Kågström (1994), Kågström and

Poromaa (1996), and Chen and Lv (2018), given by

sep
[(

A, AP̂ +B
)
,
(
I,−P̂

)]= min
∥X∥F=1

∥∥AX P̂ + (
AP̂ +B

)
X

∥∥
F (72)

= min
∥vec(X )∥2=1

∥∥HP̂vec(X )
∥∥

2 (73)

=σmin
(
HP̂

)≤min
∣∣λ(

A, AP̂ +B
)−λ(

P̂
)∣∣ (74)

where λ
(
A, AP̂ +B

)
is the set of (generalized) eigenvalues or the spectrum of the

pencil
(
A, AP̂ +B

)
(hence λ

(
P̂

)
is thus the spectrum of P̂). As emphasized by Meyer-

Gohde (2023a) the separation between the two pencils - the smallest singular

value of HP̂ - extends the conditioning number from standard linear equations to

structured problems like our UQME. The a posteriori condition number for the

matrix quadratic is given by sep−1 [(
A, AP̂ +B

)
,
(
I,−P̂

)]= ∥∥∥H−1
P̂

∥∥∥
2
=σmin

(
HP̂

)−1,

which can be arbitrarily larger than the inverse of the minimal distance between

the spectra of the pencils
(
A, AP̂ +B

)
,
(
I,−P̂

)
. This inverse of the separation

relates an upper bound to the forward error directly to the backward error, like the

condition number for a standard linear system, and Meyer-Gohde (2023a) shows

that this backward error can also differ arbitrarily from the residual, another

frequent measure used in the literature. The tighter bound accounts for the

structure of the problem more carefully, considering the linear operator HP̂ and
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the residual RP̂ jointly, but for larger models can be computationally prohibitive.

Hence the looser bound, besides linking difficulties in alternative measures via

the separation and backward errors directly, is also practical, albeit pessimistic,

for large scale DSGE models.

5. APPLICATIONS

We run through two different sets of experiments to assess the SDAs - in the

model of Smets and Wouters (2007) and on the suite of models in the Macroeco-

nomic Model Data Base (MMB) (see Wieland, Cwik, Müller, Schmidt, and Wolters,

2012; Wieland, Afanasyeva, Kuete, and Yoo, 2016).10 These two sets enable us to

assess the different methods firstly in a specific, policy relevant model and then

also in non-model specific manner, to give us insight on how robust our results are

across models. Additionally, these are exactly the experiments run in Meyer-Gohde

and Saecker (2022), Meyer-Gohde (2023b), and Binder and Meyer-Gohde (2024)

to maximize the comparability with all the different algorithms compared there.

We will focus here on comparing our algorithms above with Dynare’s QZ-based

method,11 Dynare’s Cyclic and Logarithmic reduction methods, the baseline New-

ton method from Meyer-Gohde and Saecker (2022), and the baseline Bernoulli

method from Meyer-Gohde (2023b).12 We assess the performance with respect

to the accuracy, computational time, and convergence to the stable solvent. We

examine the consequences of initializing both from zero matrix (an uninformed

initialization of a stable solvent), or the standard initialization for the reduction

and structure preserving doubling algorithms, and Dynare’s QZ solution.

10A model comparison initiative at the Institute for Monetary and Financial Stability (IMFS),

see http://www.macromodelbase.com.
11See Villemot (2011).
12Additionally, note that we follow Dynare’s QZ and reduce the dimensionality of the problem for

our implementations of the doubling algorithms SF1 and SF2 by grouping variables and structuring

the matrix quadratic according to the classification of “static”, “purely forward”, “purely backward

looking”, and “mixed” variables. The details are in the online appendix and Meyer-Gohde and

Saecker (2022). We take Dynare’s reduction algorithms “as is”.

http://www.macromodelbase.com
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5.1. Smets and Wouters’s (2007) Model

We start with Smets and Wouters’s (2007) medium scale, estimated DSGE

model that is a benchmark for policy analysis. They estimate and analyze a New

Keynesian model with US data featuring the usual frictions, sticky prices and

wages, inflation indexation, consumption habit formation as well as production

frictions concerning investment, capital and fixed costs. For our purposes, the

following log-linearized monetary policy rule is particularly important, as we will

compare the accuracy of different solution methods when solving under alternate,

but nearby parameterizations - specifically parameter values in the following

Taylor rule

r t = ρr t−1 + (1−ρ)(rππt + rY (yt − yp
t ))+ r∆y((yt − yp

t )− (yt−1 − yp
t−1))+εr

t , (75)

where r t is the interest rate, πt inflation, and (yt − yp
t ) the current output gap. The

parameters rπ, rY and r∆y describing the sensitivity of the interest rate to each of

these variables, and also the change in the output gap, and ρ measures interest

rate smoothing. The rule is completed with an AR(1) monetary policy shock, εr
t ,

which is assumed to have an iid normal innovation. The model parameters are

estimated using Bayesian methods on seven macroeconomic time series from the

US economy to estimate, the resulting posterior produces out-of-sample forecasting

performance that is inline with reduced form (B)VAR models.

The results for the posterior mode of Smets and Wouters (2007) can be found

in table 1. Compared with the QZ algorithm, both the doubling algorithms, SF1

and SF2, along with the reduction algorithms already implemented in Dynare,

perform very comparably. This is in contrast to the baseline Newton algorithm of

Meyer-Gohde and Saecker (2022) that fails to converge to the stable solvent (there

is no guarantee that this algorithm will converge to a particular solvent, see their

discussion and the varieties and extensions of this baseline algorithm that also

perform more favorably). The baseline Bernoulli algorithm of Meyer-Gohde (2023b)

gives a tradeoff repeated throughout that analysis: generally more accurate, but

often about an order of magnitude slower, than QZ. This is not the case with our

doubling algorithms, they are as fast or faster than QZ and provide an order of

magnitude more of accuracy. All four of the algorithms explored here, doubling
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Method Relative Performance Forward Errors Iterations

Run Time Max Abs. Diff. Bound 1 Bound 2

Dynare (QZ) 7.2e-04 — 5.2e-14 2.3e-11 1

Dynare (Cyclic Reduction) 0.92 7.4e-13 2.9e-15 1e-11 10

Dynare (Log Reduction) 1.3 1e-12 2.3e-14 1.5e-11 9

Baseline Newton 17 1.1e+02 1.3e-14 3.2e-09 99

Baseline Bernoulli 14 7.7e-13 3.7e-14 2.6e-11 4.4e+02

Doubling SF1 1 7.8e-13 8.6e-15 4.9e-12 10

Doubling SF2 0.85 7e-13 8.1e-15 4.9e-12 10

TABLE 1. Results: Model of Smets and Wouters (2007), Posterior Mode

• For Dynare (QZ), refer to Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and

Villemot (2011).

• Run Time for Dynare (QZ) in seconds, for all others, run time relative to Dynare.

• Max Abs. Diff. measures the largest absolute difference in the computed P of each

method from the P produced by Dynare.

• Forward error 1 and 2 are the upper bounds for the true forward error, see (71).

and reduction, require about 10 iterations to converge and provide solutions that

do not differ in an economic sense from the solution provided by QZ.

In table 2 we examine the different methods as solution refinement techniques,

by parameterizing the model of Smets and Wouters (2007) to an economically

relevant numerical instability following Meyer-Gohde (2023a) and initializing the

different methods at the Dynare QZ solution. Note that the reduction methods

implemented in Dynare cannot work with an initial value for the solution, so

we compare the solution provided by Dynare’s QZ with the doubling refinement

versions of SF1 and SF2 as well as Meyer-Gohde and Saecker’s (2022) Newton and

Meyer-Gohde’s (2023b) Bernoulli method. First, consistent with theorem 3, the

SF2 algorithm does not appear to be comparable with the Newton or SF1 algorithm,

converging to a solution that has a much less substantial improvement in accuracy.

The Newton algorithm provides substantially more accuracy than the Bernoulli

algorithm but at a much higher additional cost, echoing a tradeoff mentioned above.

The SF1 algorithm breaks through this barrier, providing roughly the same level
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Method Relative Performance Forward Errors Iterations

Run Time Variance πt Bound 1 Bound 2

Dynare (QZ) 0.0019 0.28 3.5e-13 4.6 1

Baseline Newton 19 0.45 3.9e-17 0.00058 4

Baseline Bernoulli 13 0.39 1.2e-15 0.018 90

Doubling SF1 5.6 0.33 6.6e-17 0.0009 11

Doubling SF2 3.2 0.48 6.6e-14 0.86 12

TABLE 2. Results: Model of Smets and Wouters (2007), Numerically Prob-

lematic Parameterization

• For Dynare, refer to Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot

(2011).

• Run Time for Dynare in seconds, for all others, run time relative to Dynare.

• Variance πt gives the associated value for the population or theoretical variance of

inflation - note that two algorithms did not converge to a stable P and hence the variance

could not be calculated for them.

• Forward error 1 and 2 are the upper bounds for the true forward error, see (71).

of accuracy as the Newton algorithm at half the additional computational costs of

the Bernoulli algorithm. That the Newton method is so time consuming despite

the relative few number of iterations performed emphasizes the computational

intensity of the Newton step that is not shared by the doubling algorithms - the

former involves solving structured linear (Sylvester) equations whereas the latter

solve standard systems of linear equations. Notice that the resulting implied

variances of inflation, πt, differ on an economically relevant scale. That is, the

more accurate methods all agree that the QZ solution understates the variance of

inflation by up to about one-half.13

13Note that the different refinements still do not entirely agree on the actual level of the

variance, this parametrization is very poorly conditioned - see Meyer-Gohde (2023a) - and hence

very sensitive to small differences in the solutions. Additionally, the same method, Dynare’s

native theoretical moment calculator, is used with all methods to calculate the variance. Given the

warnings of ill condition, a researcher would be well advised to calculate the moment with each

moment more carefully - we do not do so as we want to proceed uniformly with the results from

each method and, hence, follow the choice of method by QZ in Dynare.
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We now take this refinement perspective and apply the different algorithms

to solve iteratively for different parameterizations of the Taylor rule in the final

experiment with the model of Smets and Wouters (2007). We would like to estab-

lish whether solutions from previous, nearby parameterizations can be used to

efficiently initialize the doubling methods similarly to the experiment above with

the QZ solution as the initial guess. To that end, the experiment iterates through

a grid of 10×10 for the response in the Taylor rule to inflation and the output

gap by varying the size of the interval in the grid - setting rπ ∈ [1.5,1.5 (1+10−x)]

and rY ∈ [0.125,0.125 (1+10−x)], where x ∈ [−1,8] (Smets and Wouters (2007)

calibrate them to rπ = 2.0443 and rY = 0.0882). The algorithm iterates through

the two-dimensional grid taking the solution from the previous parameterization

as the initialization for the next iteration. A decrease in the spacing between the

100 grid points thus increases the precision of the initialization.

Figure 1 summarizes the experiment graphically. Firstly, the two top panels

show that the accuracy of the algorithms is independent of the grid spacing (and,

hence, how close the parameter steps are from each other), with the exception

being the baseline Bernoulli method that displays a significant drop in forward

errors that coincides with the drop in computation time in the lower half - at a

close enough parameterization, the Bernoulli algorithm starts with a guess from

the previous parameterization that is accurate beyond the convergence threshold

and the single iteration that is performed provides substantial (relative to more

widely spaced grids) accuracy gains. In terms of their relative accuracies, the

Newton is the most and the Bernoulli is generally (that is, except at the closely

spaced grids) the least accurate. All of the algorithms here, the doubling and

reduction algorithms, are more accurate than QZ, with the cyclic reduction and SF2

algorithms roughly the same and close to Newton, then the log reduction follows,

with the SF1 doubling algorithm between QZ and the log reduction algorithm. As

to be expected from theorem 3, the SF2 doubling algorithm does not systematically

profit in terms of reduced computation time as the parameter iterations get closer

and closer as the Newton and Bernoulli algorithms do. The SF1 doubling algorithm,

in contrast, does profit with a clear downward trend in the computation time as

can be seen in figure 1d. This downward trend is hardly recognizable in figure 1d
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(A) Forward Error 1 (B) Forward Error 2

(C) Computation Time per Grid Point, All

methods

(D) Computation Time per Grid Point, Subset

FIGURE 1. Forward Errors and Computation Time per Grid Point for

different parameterizations of the model by Smets and Wouters (2007).

Figures 1a and 1b plot the upper forward error bounds 1 and 2 against the grid

size, log10 scale on both axes. Figures 1c and 1d plot the computation per grid

point against the number of grid points, log10 scale on both axes.

when the Newton and Bernoulli algorithms are also plotted highlighting that this

effect is far less significant for the SF1 doubling algorithm than for the Newton

and Bernoulli algorithms.

5.2. MMB Suite Comparison

We use models from the Macroeconomic Model Data Base (MMB) to investigate

the properties of the structure-preserving doubling algorithms. This gives us the

advantage to investigate the properties of the algorithms in a model-robust fashion.



32 HUBER, MEYER-GOHDE, AND SAECKER

We use version 3.1 which contains 151 different models, ranging from small scale

to large scale models. The latter include estimated models of the US, EU, and

multi-country economies. We use the algorithm on a subset of models appropriate

for reproduction14 for which their differing sizes are visible in figure 2.

FIGURE 2. Histogram over the number of variables for the 99 MMB models

Figure 2 plots the number of model variables over the amount of MMB models.

Currently the total amount of models considered is 99.

Examining the models of the MMB by comparing the doubling methods to the

QZ and various alternatives, we solve each applicable model in the MMB 100 times,

initializing the methods with a zero matrix and present the results as the average

of the middle three quintiles across runs to minimize the effects of outliers.

Table 3 summarizes the results. As noted in Meyer-Gohde and Saecker (2022)

and Meyer-Gohde (2023b), the Newton method is somewhat slower but far more

accurate than QZ when it converges to the stable solution, yet it does this in its

baseline form only slightly more than half the time and the baseline Bernoulli

algorithm always converges to the unique stable solution, but does so more slowly

than QZ at about the same level of accuracy. The cyclic reduction method is an

intermediate case, converging to the stable solution for about 3/4 of the models,

at generally comparable computation time and somewhat higher accuracy than

QZ. The logarithmic reduction is an improvement, converging for almost all of the

models, and doing so at about the same speed and accuracy as the cyclic reduction

14Currently, this is 99 models. Some of the models in the database are deterministic and/or

use nonlinear or non-rational (e.g., adaptive) expectations and, hence, are not appropriate for our

comparison here.
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method. In terms of the doubling algorithms, they converge more frequently than

even the logarithmic reduction methods, but still not for all models. The methods

fail to converge when there is a breakdown of nonsingularity of the coefficient

matrices in the recursion that need to be inverted. As we will see in the next

experiment, this can be overcome at least for the SF1 doubling algorithm by an

appropriate (re)initialization of the algorithm. The SF2 doubling algorithm on

average outperforms QZ both in terms of speed and accuracy, although not for

every model as the max or worst case shows (and again with the caveat that it

does not successfully converge for 7 of the 99 models). The SF1 algorithm is not

quite as fast at the median but has a far lower worst case computation time. This

average performance of SF2 being faster than SF1 is consistent with the former

inverting only one matrix, X †
k −Y †

k - see Algorithm 2, whereas the latter needs

to invert two, I −Yk Xk and I − XkYk - see Algorithm 1. Comparing the errors of

the two doubling algorithms, SF2 usually has the lower worst case error upper

bound, although SF1 has the most accurate best case model. In sum, the doubling

algorithms (less so the reduction algorithms) perform very favorably relative to

QZ.

A graphical overview of the entire distribution of forward errors is plotted in

figure 3, the upper row relative to QZ and the lower in absolute terms. Meyer-

Gohde and Saecker’s (2022) Newton algorithm is the most accurate with a clearly

left shifted distribution relative to Dynare, with a mode improvement of about one

order of magnitude for both forward error measures, and Meyer-Gohde’s (2023b)

Bernoulli method the least with a clearly right shifted distribution relative to QZ

for both error measures. All of the methods here, reduction and doubling, lie in

between but with modes and medians all to the left of QZ. While they are all very

comparable, the SF2 algorithm has almost its entire mass to the left of Dynare

and the cyclic reduction algorithm is right skewed with a substantial mass to the

right of Dynare. The lower panels plot the absolute values and the tighter bound,

forward error 1 on the left, show that almost all of the models have errors less

than 1e-10 and the accuracy of the Newton method is also clear with a substantial

mass of upper bounds on forward error inside machine precision and all mass

essentially below e-12. The lower right panel shows how much the weaker bound
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(A) Forward Error 1, Relative to Dynare (B) Forward Error 2, Relative to Dynare

(C) Forward Error 1 (D) Forward Error 2

FIGURE 3. Distribution of forward error bounds relative to Dynare for the

Macroeconomic Model Data Base (MMB)

Figures 3a, 3b plot the distribution of model solutions against the upper bounds

of the forward error 1 and 2 for all algorithms, log10 scale on the x axis, 99 MMB

models (starting guess: zero matrix).

can differ which must be weighed against its lower computational intensity, see

Meyer-Gohde (2023a). Nonetheless, it appears that all models in the MMB were

solved with acceptable accuracy and the SF2 doubling algorithm is to be preferred

among the algorithms here.

Figure 4 provides a model-by-model comparison of the different algorithms’

performance relative to QZ. All four panels express computation times and forward

errors relative to Dynare on a log scale - hence a negative value in a dimension

means the algorithm is more accurate or computationally efficient than QZ. In

the top panels all of the methods are plotted using the two different measures of
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(A) Forward Error 1, All Methods (B) Forward Error 2, All Methods

(C) SDA SF1 (D) SDA SF2

FIGURE 4. Forward Errors and Computation Time Relative to Dynare,

log10 scales, for the Macroeconomic Model Data Base (MMB)

the forward error. First, recognize that the Bernoulli method is sometimes more

and sometimes less accurate than QZ but usually slower (higher computation

time), whereas the baseline Newton method is generally more accurate but usually

slightly slower than QZ. The doubling and reduction algorithms require similar

computation times as QZ (almost always within one half an order of magnitude

slower/faster) but are generally more accurate. The doubling algorithms are

more accurate than the reduction algorithms (notice the outlier along the x axis

of the reduction algorithms with more than three orders of magnitude higher

forward errors than QZ) and the SF2 doubling algorithm is the most accurate

of the doubling algorithms as can be seen by comparing the lower two panels -

visually, this algorithm is on average slightly faster than QZ and provides an order

of magnitude more accuracy.
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(A) Forward Error 1, Relative to Dynare (B) Forward Error 2, Relative to Dynare

(C) Computation Time, Relative to Dynare (D) Forward Error 1, Relative to Dynare

FIGURE 5. Forward Errors, Computation Time and Number of State Vari-

ables for the Macroeconomic Model Data Base (MMB)

Figures 5a, 5b plot the upper bounds of the forward error 1 and 2 against model

size (number of state or backward looking variables) for all methods, log10 scale

on both axes.

Figure 5 continues the model-by-model comparison of the different algorithms’

performance relative to QZ, but now with a focus on the effect of model size,

measured by the number of state or backward-looking variables, on the algorithms.

The top tow panels give the accuracy of the different methods for the different

models plotted against the dimension of the endogenous state. There is not a

visually compelling correlation - although for very large models, the reduction

and doubling algorithms like the Newton algorithm appear to perform better

than QZ. For computational times the story is different: the lower panels plot the

computational time against the number of state variables and a clear downward
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trend or negative correlation in particular for the doubling algorithms is obvious.

In sum, for the largest models in the MMB, our doubling algorithms provide about

two orders of magnitude more accuracy at about one tenth the computation time.

To assess the potential for improving on solutions, we repeat the exercise, but

now initialize with the solution provided by QZ, see table 4. Note that in contrast to

table 3, now the SF1 doubling algorithm, along with the baseline Newton method,

converges successfully to the unique stable solution in all models. Consistent

with theorem 3, the SF2 doubling algorithm, however, does not and continues

to converge or not for the same models as under the initialization with the zero

matrix.

Both the Bernoulli and Newton methods run one iteration, and the later gener-

ally achieves a greater increase in accuracy albeit at a higher computation cost due

to the computational intensity of the Newton step. The SF1 doubling algorithm

runs through multiple iterations, ending up being slightly faster but slightly less

accurate than the Newton method at the median. Far more impressive here are the

max or worst-case outcomes, with SF1 doubling at worst adding on an additional

1.9 times QZ computation cost and 3.1 times the forward error. The worst case

Newton computation costs are an additional 330 times the QZ initial time and the

SF2 doubling algorithm has at worst a forward error bound 53 times that of QZ.

We conclude that the SF1 doubling algorithm ought to be preferred as a solution

refinement method, usually providing significant accuracy gains at low additional

computation costs that is robust even in the worst case relative to alternatives.

Figure 6, like figure 3 but now initialized at the QZ solution, provides an

overview of the entire distribution of forward errors, the upper row relative to

those from Dynare’s QZ method and the lower in absolute terms. It is apparent

that the baseline Bernoulli algorithm provides only a marginal improvement

on the QZ solution. While this should be tempered with the observation that

only one Bernoulli iteration was performed, the same is true for the Newton

algorithm. The doubling algorithms perform favorably, with both displaying left

shifted distributions of error bounds relative to QZ. Taken together with the results

from table 4, the SF1 doubling algorithm can be considered an ideal solution

refinement algorithm across a wide variety of models.
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(A) Forward Error 1, Relative to Dynare (B) Forward Error 2, Relative to Dynare

(C) Forward Error 1 (D) Forward Error 2

FIGURE 6. Distribution of forward error bounds relative to Dynare for the

Macroeconomic Model Data Base (MMB)

Figures 6a, 6b plot the distribution of model solutions against the upper bounds

of the forward error 1 and 2 for all algorithms, log10 scale on the x axis, 99 MMB

models (starting guess: solution Dynare(QZ)).

6. CONCLUSION

We have introduced and developed doubling algorithms for solving linear DSGE

models as alternatives to QZ methods (Moler and Stewart, 1973; Golub and van

Loan, 2013). We connect these to the related reduction algorithms implemented,

albeit silently, in Dynare. The doubling algorithms have theoretical convergence

results that promise quadratic convergence rates like the Newton based methods

of Meyer-Gohde and Saecker (2022) as well as convergence to the stable solution

as with the Bernoulli methods of Meyer-Gohde (2023b).
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In a set of experiments using the Smets and Wouters (2007) model and the suite

of models in the Macroeconomic Model Data Base (MMB), we find that both the

doubling algorithms perform very favorably relative to QZ, with generally more

accurate solutions produced using less computational time. The results are not

entirely clear cut, as there are outliers in terms of accuracy, computational time,

and convergence. We extended the doubling algorithms from the literature to

operate off of user defined initializations and provide convincing evidence that the

SF1 doubling algorithm can reliably provide low cost, high accuracy refinements

of existing solutions. That is, in the absence of any specific considerations, the

SF1 doubling algorithm should be the algorithm of choice of researchers looking to

improve the accuracy of a solution produced by another method.
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APPENDIX

6.1. Detailed Dynare Topology

Here we summarize the details in the matrix quadratic that follows from the typology of

variables from Dynare as laid out in Villemot (2011). See Meyer-Gohde and Saecker (2022) for

details.

Subdividing the system of equations in accordance with the QR decomposition yields



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă+
ns×n+

Ã+
nd×n+


︸ ︷︷ ︸

A
n×n

P2
n×n

+



ns n−− nm n++

ns Ă0s

n−− 0

nm 0

n++ 0

Ă0d

ns×nd

Ã0

nd×nd


︸ ︷︷ ︸

B
n×n

P
n×n

+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă−
ns×n−

Ã−
nd×n−


︸ ︷︷ ︸

C
n×n

= 0
n×n

where nd is the number of dynamic variables, the sum of number of purely backward-looking, n−−,

mixed nm, and purely forward-looking variables, n++. The number of forward-looking variables, n+,

is the sum of the number of mixed, nm, and purely forward-looking variables, n++, and the number

of backward-looking variables, n−, is the sum of the number of purely backward-looking, n−− and

mixed variables nm. Hence, the number of endogenous variables is the sum of the number of static,

ns, and dynamic variables, nd , or the sum of the number of static, ns, purely backward-looking,

n−−, mixed nm, and purely forward-looking variables, n++. The dimensions satisfy the following

nd = n−−+nm +n++, n+ = nm +n++, n− = n−−+nm, n = ns +nd = ns +n−−+nm +n++

The transition matrix, P, from (4) that solves the matrix equation (5) can be subdivided in

accordance to Dynare’s typology as

P=



ns n−− nm n++

ns Ps,s Ps,−− Ps,m Ps,++

n−− P−−,s P−−,−− P−−,m P−−,++

nm Pm,s Pm,−− Pm,m Pm,++

n++ P++,s P++,−− P++,m P++,++

=
[ ns n−− nm n++

n P•,s P•,−− P•,m P•,++
]
=



n

ns Ps,•

n−− P−−,•

nm Pm,•

n++ P++,•


The matrix quadratic can be expressed as

M( P
n×n

)= A
n×n

P2 + B
n×n

P+ C
n×n

= (
AP+B

)︸ ︷︷ ︸
≡G

P+C

For a solvent P of the matrix quadratic, taking the structure of C from the Dynare typology above

into account yields

M(P)= 0=GP+C
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=G
[ ns n−− nm n++

n P•,s P•,−− P•,m P•,++
]
+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă−
ns×n−

Ã−
nd×n−


Following Meyer-Gohde and Saecker (2022), who apply corollary 4.5 of Lan and Meyer-Gohde

(2014), if P is the unique solvent of M(P) stable with respect to the closed unit circle, G has full rank

and hence the columns of P associated with nonzero columns in C, the static and forward-looking

variables are zero� P•,s = 0
n×ns

, P•,++ = 0
n×n++, whence P is P=

[ ns n−− nm n++

n 0 P•,−− P•,m 0
]

and M(P) =
[

0
n×ns

M(P)−−
n×n−− M(P)m

n×nm
0

n×n++

]
. Consequentially, the first ns rows of the matrix

quadratic, taking



n

n−− P−−,•

nm Pm,•

n++ P++,•

 as given, yield
[ n−− nm

ns Ps,−− Ps,m

]
as

[ n−− nm

ns Ps,−− Ps,m

]
=−

[
Ă0s

ns×ns

]−1

 Ă+
ns×n+


n−− nm

nm Pm,−− Pm,m

n++ P++,−− P++,m

 
n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m



+ Ă0d

ns×nd



n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m

n++ P++,−− P++,m

+ Ă−
ns×n−



and the first ns rows of P are Ps,•
ns×n

=
[ ns n−− nm n++

ns 0 Ps,−− Ps,m 0
]
.

The last nd columns and rows of P solve the reduced matrix quadratic equation



n−− nm n++

n−− 0

nm 0

n++ 0

Ã+
nd×n+




n−− nm n++

n−− P−−,−− P−−,m P−−,++

nm Pm,−− Pm,m Pm,++

n++ P++,−− P++,m P++,++


︸ ︷︷ ︸

P̃
nd×nd

· P̃
nd×nd

+ Ã0

nd×nd
P̃

nd×nd
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+



n−− nm n++

n−− 0

nm 0

n++ 0

Ã−
nd×n−



=M̃(P̃)
nd×nd

=
[ n−− nm n++

nd M̃(P̃)−− M̃(P̃)m 0
]
= 0

nd×nd

Recalling that P•,++ = 0
n×n++, P̃ can be reduced and two submatrices P and P̂ defined via

P̃=



n−− nm n++

n−− P−−,−− P−−,m P−−,++

nm Pm,−− Pm,m Pm,++

n++ P++,−− P++,m P++,++

=



n−− nm n++

n−− P−−,−− P−−,m 0

nm Pm,−− Pm,m 0

n++ P++,−− P++,m 0

≡



n−− nm n++

n−− 0

nm 0

n++ 0

P
n−−×n−

P̂
n+×n−



where P
n−−×n− ≡

[ n−− nm

n−− P−−,−− P−−,m

]
and P̂

n+×n− ≡


n−− nm

nm Pm,−− Pm,m

n++ P++,−− P++,m

 allow the matrix qua-

dratic to be written as



n−− nm n++

n−− 0

nm 0

n++ 0

Ã+
nd×n+




n−− nm n++

n−− 0

nm 0

n++ 0

P
n−−×n−

P̂
n+×n−

+ Ã0

nd×nd





n−− nm n++

n−− 0

nm 0

n++ 0

P
n−−×n−

P̂
n+×n−



+ Ã−
nd×n−

= M̃(P̃)
nd×nd

=
[ n−− nm n++

nd M̃(P̃)−− M̃(P̃)m 0
]
= 0

nd×nd

6.2. Detailed Dynare Topology - SDA for SF1

Beginning with Algorithm 1, the initial values

X0 =−B−1C, Y0 =−B−1 A, E0 =−B−1C, F0 =−B−1 A

can be written as

X0 =−B−1C =
(

Ã0

nd×nd

)−1 [ n− n++

nd Ã−
nd×n−

0
]
=

[(
Ã0)−1 Ã−

nd×n−
0

nd×n++

]
=

[
X0

nd×n−
0

nd×n++

]
=

[
E0

nd×n−
0

nd×n++

]
= E0

and

Y0 =−B−1 A =
(

Ã0

nd×nd

)−1 [ n−− n+

nd 0 Ã+
nd×n+

]
=

[
0

nd×n−−

(
Ã0)−1 Ã+

nd×n+

]
=

[
0

nd×n−−
Y0

nd×n+

]
=

[
0

nd×n−−
F0

nd×n+

]
= F0
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Now proceeding by induction and assuming that Xk, Yk, Ek, and Fk have the same dimensions

(i.e., zero and non zero), we will show this holds for Xk+1, Yk+1, Ek+1, and Fk+1. Beginning with

Ek+1,

Ek+1 = Ek (I −Yk Xk)−1 Ek = Ek (I −Yk Xk)−1
[

Ek
nd×n−

0
nd×n++

]
=

[
Ek (I −Yk Xk)−1 Ek

nd×n−
0

nd×n++

]
=

[
Ek+1
nd×n−

0
nd×n++

]

which has the same zero and non zero structure as Ek. By direct extension this holds equivalently

for Xk

Xk+1 = Xk +Fk (I − XkYk)−1 XkEk =
[

Xk
nd×n−

0
nd×n++

]
+Fk (I − XkYk)−1 Xk

[
Ek

nd×n−
0

nd×n++

]
=

[
Xk

nd×n−
0

nd×n++

]
+

[
Fk (I − XkYk)−1 XkEk

nd×n−
0

nd×n++

]
=

[
Xk +Fk (I − XkYk)−1 XkEk

nd×n−
0

nd×n++

]
=

[
Xk+1
nd×n−

0
nd×n++

]

Now for Fk+1

Fk+1 = Fk (I − XkYk)−1 Fk = Fk (I − XkYk)−1
[

0
nd×n−−

Fk
nd×n+

]
=

[
0

nd×n−−
Fk (I − XkYk)−1 Fk

nd×n+

]
=

[
0

nd×n−−
Fk+1
nd×n+

]

By direct extension this holds equivalently for Yk

Yk+1 =Yk +Ek (I −Yk Xk)−1 YkFk =
[

0
nd×n−−

Yk
nd×n+

]
+Ek (I −Yk Xk)−1 Yk

[
0

nd×n−−
Fk

nd×n+

]
=

[
0

nd×n−−
Yk

nd×n+

]
+

[
0

nd×n−−
Ek (I −Yk Xk)−1 YkFk

nd×n+

]
=

[
0

nd×n−−
Yk +Ek (I −Yk Xk)−1 YkFk

nd×n+

]
=

[
0

nd×n−−
Yk+1
nd×n+

]

This gives recursions in the generically non zero matrices Xk, Yk, Ek, and Fk.

Noting that Xk and Yk can be written out blockwise as

Xk =



n−− nm n++

n−− Xk;−−,−− Xk;−−,m 0

nm Xk; m,−− Xk; m,m 0

n++ Xk;++,−− Xk;++,m 0

=



n−− nm n++

n−− 0

nm 0

n++ 0

Xk
nd×n−

=



n−− nm n++

n−− 0

nm 0

n++ 0

Xk
n−−×n−

Xk
n+×n−


and

Yk =



n−− nm n++

n−− 0 Yk;−−,m Yk;−−,++

nm 0 Yk; m,m Yk; m,++

n++ 0 Yk;++,m Yk;++,++

=



n−− nm n++

n−− 0

nm 0

n++ 0

Yk
nd×n+

=



n−− nm n++

n−− 0

nm 0

n++ 0

Yk
n−×n+

Yk
n++×n+
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and hence their products can be calculated as

XkYk =



n−− nm n++

n−− 0

nm 0

n++ 0

Xk Yk
nd×n+

 and Yk Xk =



n−− nm n++

n−− 0

nm 0

n++ 0

Yk Xk
nd×n−


Similar calculations apply to YkFk and XkEk.

For Algorithm 5, note that if X̂0, Ŷ0, Ê0, F̂0 have (zero and non zero) dimensions that correspond

to those of X0, Y0, E0, and F0, the same approach can be taken. Comparing, the only requirement

is that P0 takes the form

P0 =



n−− nm n++

n−− 0

nm 0

n++ 0

P0
n−−×n−


which conforms to the structure of the matrix quadratic as shown in the subsection above.

6.3. Detailed Dynare Topology - SDA for SF2

Beginning with Algorithm 2, the initial values

X †
0 = 0, Y †

0 =−B, E†
0 =−C, F†

0 =−A

can be written as

X †
0 = 0, Y †

0 =− Ã0

nd×nd
, E†

0 =
[ n− n++

nd −Ã−
nd×n−

0
]
, F†

0 =
[ n−− n+

nd 0 −Ã+
nd×n+

]
For the calculations, we will work with:

E†
k+1 = E†

k

(
X †

k −Y †
k

)−1
E†

k

F†
k+1 = F†

k

(
X †

k −Y †
k

)−1
F†

k

X †
k+1 = X †

k −F†
k

(
X †

k −Y †
k

)−1
E†

k

X †
k+1 −Y †

k+1 = X †
k −Y †

k −F†
k

(
X †

k −Y †
k

)−1
E†

k −E†
k

(
X †

k −Y †
k

)−1
F†

k

As above, E†
k+1 and F†

k+1 will maintain the (zero and non zero) dimensions that correspond to E†
0

and F†
0 via the post multiplication of E†

k and F†
k and induction. The same post multiplication gives

X †
k+1 the (zero and non zero) dimensions that correspond to E†

0

X †
k+1 = X †

k −F†
k

(
X †

k −Y †
k

)−1
E†

k =
[

Xk
†

nd×n−
0

nd×n++

]
−F†

k

(
X †

k −Y †
k

)−1
[

Ek
†

nd×n−
0

nd×n++

]

=
[

Xk
†

nd×n−
0

nd×n++

]
−

[
F†

k

(
X †

k −Y †
k

)−1
Ek

†

nd×n−
0

nd×n++

]

=
[

Xk
† −F†

k

(
X †

k −Y †
k

)−1
Ek

†

nd×n−
0

nd×n++

]
=

[
Xk+1

†

nd×n−
0

nd×n++

]
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For Algorithm 6 with an initial guess P0, E†
0 and F†

0 are unchanged, so the only requirement is

that P0 takes the form

P0 =



n−− nm n++

n−− 0

nm 0

n++ 0

P0
n−−×n−


to have (zero and non zero) dimensions that correspond to E†

0 - this conforms to the structure of the

matrix quadratic as shown in the subsection above.

PROOF OF THEOREM 2

For the proofs of (1) and (2) see Theorems 3.18 and 3.19 by Huang, Li, and Lin (2018, pp. 35,37).

To proof (3) first note that Assumption 1 implies either ρ(P)≤ 1∧ρ(Pd)< 1 and / or ρ(P)< 1∧ρ(Pd)≤
1.

In the following we will first deal with the scenario where ρ(P)≤ 1∧ρ(Pd)< 1 and show that in

this case Hk converges quadratically to zero. To see this, note that using (64) of the primal UQME

(5) and the dual UQME (20), respectively, we receive

Lk =Mk −HkM 2
k , (A1)

Hk =Nk −LkN 2
k . (A2)

where Nk =N 2k = P2k

d . Using (A1) to substitute Lk in (A2) yields

Hk =Nk −MkN 2
k +HkM 2

k N 2
k . (A3)

Thus, for any sub-multiplicative matrix norm ∥ .∥ we receive

∥Hk∥ ≤ ∥Nk∥+∥Mk∥∥Nk∥2 +∥Hk∥∥Mk∥2∥Nk∥2. (A4)

Since ρ(P)·ρ(Pd)= ρ(M )·ρ(N )< 1 defining ϵk = ∥Nk∥∥Mk∥ we know that lim
k→∞

ϵk = 0. Hence, there

is some sufficiently large k so that ϵk < 1 and consequently

∥Hk∥ ≤
1+ϵk

1−ϵ2
k
∥Nk∥ ⇒ lim

k→∞
∥Hk∥ = 0. (A5)

From the Gelfand’s formula / the spectral radius theorem we also know

lim
k→∞

∥Nk∥1/2k = ρ(N )

so that

∥Hk∥1/2k ≤
(

1+ϵk

1−ϵ2
k

)1/2k

∥Nk∥1/2k ⇒ lim
k→∞

∥Hk∥1/2k = ρ(N )≤ ρ(Pd). (A6)
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Since ρ(Pd) < 1 we know that Hk converges quadratically to zero. Hence, we also know that

there must be some sufficiently large k such that ∥Ĥk−1∥ = ∥H0 · . . . ·Hk−1∥ < 1 and consequently

∥Ĥk∥ ≤ ∥Ĥk−1∥∥Hk∥ ≤ ∥Hk∥. This means that Ĥk also converges quadratically to zero, i.e.,

lim
k→∞

∥Ĥk∥1/2k ≤ ρ(N )= ρ(Pd). (A7)

Now we may rewrite (65) to

P − L̂k = ĤkMk+1, (A8)

and receive

∥P − L̂k∥ ≤ ∥Ĥk∥∥Mk+1∥. (A9)

The statement then follows from the Gelfand’s formula / the spectral radius theorem as

∥P − L̂k∥1/2k ≤ ∥Ĥk∥1/2k∥Mk+1∥1/2k ⇒ lim
k→∞

∥P − L̂k∥1/2k ≤ ρ(P)ρ(Pd). (A10)

Now let us consider the scenario where ρ(P)< 1∧ρ(Pd)≤ 1. In this case, we may define α := ρ(P)

and rewrite (5) and (20) to

AαP2
α+BPα+Cα = 0 (A11)

CαP2
α,d +BPα,d + Aα = 0, (A12)

where

Aα =αA, Cα =α−1C, Pα =α−1P, Pα,d =αPd . (A13)

By definition the solvents Pα and Pα,d to (A11) and (A12), respectively, satisfy ρ(Pα)≤ 1∧ρ(Pα,d)< 1.

Hence, if Lk,α, Hk,α, L̂k,α, and Ĥk,α denote the quantities of the Logarithmic Reduction with respect

to (A11), we get

lim
k→∞

∥Pα− L̂k,α∥1/2k ≤ ρ(Pα)ρ(Pα,d)= ρ(P)ρ(Pd), (A14)

from the first part of the proof. From (60), (61), and (62) we receive (via induction) that

Hk,α =α2k
Hk, Lk,α =α−2k

Lk, Ĥk,α =α
∑k

j=0 2 j
Ĥk. (A15)

Moreover, since Mk,α = P2k
α =α−2k

P2k =α−2k
Mk we may use (65) to show that

∥Pα− L̂k,α∥ = ∥Ĥk,αMk+1,α∥ =α−2k+1+∑k
j=0 2 j︸ ︷︷ ︸

>1

∥ĤkMk+1∥ > ∥P − L̂k∥. (A16)

The statement then follows from (A14) as

∥P − L̂k∥1/2k < ∥Pα− L̂k,α∥1/2k ⇒ lim
k→∞

∥P − L̂k∥1/2k ≤ ρ(P)ρ(Pd). (A17)
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INITIAL GUESS P0 FOR AP2 +BP +C = 0

Suppose we want to minimize the squared Frobenius norm ∥R(P0)∥2
F of the residuals

R(P0)= AP2
0 +BP0 +C,

where we restrict P0 to

P0 = diag(p1, . . . , pn), with p1, . . . , pn ∈ [−ρ,ρ], ρ ∈ [0,1).

Consequently, we have

∥R(P0)∥2
F =

n∑
i=1

n∑
j=1

(
ai j p2

j +bi j p j + ci j

)2

=
n∑

j=1

n∑
i=1

a2
i j p4

j +2ai jbi j p3
j +

(
b2

i j +2ai j ci j

)
p2

j +2bi j ci j p j + c2
i j.

Further, denoting the j-th column of R, A, B, and C as r j, a j, b j, and c j, respectively, we may

write

r j(p j)= ã p4
j + b̃ p3

j + c̃ p2
j + d̃ p j + ẽ (A18)

with

ã = aT
j a j

b̃ = 2 aT
j b j,

c̃ = bT
j b j +2 aT

j c j,

d̃ = 2 bT
j c j,

ẽ = cT
j c j.

Differentiating r j with respect to p j yields

r′j(p j)= 4 ã p3
j +3 b̃ p2

j +2 c̃ p j + d̃

Hence, an interior solution for p j must satisfy r′j(p j)= 0, so that we can obtain the p j ∈ [−ρ,ρ] that

minimizes r j(p j) as

p∗
j = argmin

p j∈g j∩{−ρ,ρ}
r j(p j)

where g j is the set of all real roots of r′j(p j) in [−ρ,ρ], i.e.,

g j =
{

p j ∈ [−ρ,ρ]⊂R : r′j(p j)= 0
}

, |g j| ≤ 3.

Algorithm 7 summarizes the proceeding to obtain the diagonal elements of P0.
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Algorithm 7: Initial Guess – j-th diagonal element of P0

Given: a j, b j, c j, and ρ

Set ã = aT
j a j

Set b̃ = 2 aT
j b j

Set c̃ = bT
j b j +2 aT

j c j

Set d̃ = 2 bT
j c j

Set ẽ = cT
j c j

Define r(p j) := ã p4
j + b̃ p3

j + c̃ p2
j + d̃ p j + ẽ

Define r′(p j) := 4 ã p3
j +3 b̃ p2

j +2 c̃ p j + d̃

Obtain all p j ∈ g = {
x ∈ [−ρ,ρ]⊂R : r′(x)= 0

}
Return: argmin

p j∈g j∩{−ρ,ρ}
r(p j)
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