Sticky Information and the Taylor Principle

Optimal monetary policy in the Sticky Information model

Alexander Meyer-Gohde and Mary Tzaawa-Krenzler August 2023

Goethe Universität and Institute for Monetary and Financial Stability

Motivation

This paper presents determinacy bounds on monetary policy

- **Q**: How can we use the Sticky Information model (Mankiw and Reis, 2002) to study optimal monetary policy?
- A: Analytically derive determinacy bounds on monetary policy
- \rightarrow previously unobtainable
- \rightarrow Existing analysis relies on time series methods:
 - only approximates the solution
 - misses important insights in model dynamics

Sticky information: agents update their information occasionally rather than instantaneously through a Calvo (1983)-mechanism

We derive

- a fully recursive expression of the sticky information model, SI-Phillips Curve
- implement the model in frequency domain
- determinacy bounds on monetary authority's policy rule

Woodford (2003, pp. 254-255), "... indeed, a large enough [response to] *either* [the output gap or inflation] suffices to guarantee determinacy."

 \rightarrow This does not hold true for the Sticky Information model!

Literature

Our paper brings together two literatures:

- Sticky information:
 - Information frictions: Mankiw and Reis (2007), Branch (2007), Coibion and Gorodnichenko (2015), Nason and Smith (2021), Cornand and Hubert (2022), Link et al. (2023), Andrade and Le Bihan (2013)
 - Solution: Trabandt (2007), Kiley (2007), Meyer-Gohde (2010), Huo and Takayama (2023), Kasa (2000), Jurado (2023)
- Monetary policy:
 - In non-FIRE: Ball, Mankiw, and Reis (2005), Roth and Wohlfart (2020) lovino, La'O, and Mascarenhas (2022), Chou, Easaw, and Minford (2023), An, Abo-Zaid, and Sheng (2023), Angeletos and La'O (2020), Bernstein and Kamdar (2023), Chou, Easaw, and Minford (2023)

The Sticky Information model

The Sticky Information Phillips Curve (SIPC):

$$\pi_t = \frac{1-\lambda}{\lambda} \xi y_t + (1-\lambda) \sum_{i=0}^{\infty} \lambda^i E_{t-i-1}[\pi_t + \xi(y_t - y_{t-1})]$$
(1)

where $1 - \lambda$ is the fraction of firms that obtains new information about the state of the economy and computes new path of optimal prices in period *t*; λ is fraction of firms that uses old information and prices

The IS equation:

$$y_t = E_t y_{t+1} - \sigma R_t + \sigma E_t \pi_{t+1} \tag{2}$$

Interest rate rule:

$$R_t = \phi_\pi \pi_t + \phi_y y_t \tag{3}$$

\rightarrow The infinite regress of lagged expectations precludes a recursive representation

A frequency domain approach

What we do:

- Express the model entirely in the frequency domain by applying the *z*-transform following Whiteman (1983)
- Solve the system of equations using Cauchy's residue theorem
- Determine boundary conditions on monetary policy

Some Intuition:

- <u>Time domain</u>: analyze mathematical functions of signals w.r.t. time
- Frequency domain: analyze mathematical functions or signal w.r.t. frequency
 - a **frequency** is "the number of repetitions of a periodic process in a unit of time"
 - at every point in time we get eventually different heights of frequencies

Following the Riesz-Fischer Theorem (see Sargent, 1987):

Let $\{c_n\}_{n=0}^{\infty}$ be a sequence of complex numbers for which $\sum_{n=0}^{\infty} c_n^2 < \infty$. Then, there exists a complex-valued function $f(\omega)$ defined for real ω 's belonging to the interval $[-\pi, \pi]$ such that:

$$f(\omega) = \sum_{j=0}^{\infty} c_j e^{i \, \omega j}$$

where $f(\omega)$ is called the Fourier transform of the series c_n .

- Every object that exists in the time domain also has a representation in the frequency domain → We get two representations of the same information.
- Formulating the problem in the frequency domain is equivalent to formulating the problem in the time domain → It doesn't alter the model in itself!

The z-transform

Consider the unilateral square-summable sequence of real numbers

 $\{c_n\}_{n=0}^{\infty}$

where $c_n \in \mathbb{R}$ such that $\sum_{n=0}^{\infty} c_n^2 < \infty$. Following from the Wold's decomposition theorem, the stationary random variable always has an $MA(\infty)$ -representation:

$$x_t = \sum_{n=0}^{\infty} c_n \epsilon_{t-n} = \sum_{n=0}^{\infty} c_n L^n \epsilon_t = c(L) \epsilon_t, \qquad \epsilon_t \sim WN(0, \sigma_\epsilon^2)$$

The z-transform of the variable is then given by the following function

$$x(z) = \sum_{j=0}^{\infty} c_j z^j$$

where $z \in \mathbb{C}$ and $z = e^{i\omega}$ for angular frequency $\omega \in [-\pi, \pi]$.

Scaling in the z-domain

Scaling in the z-domain

$$x(\lambda z) = \sum_{j=0}^{\infty} \lambda^j c_j z^j,$$

connects initial conditions

 $x(0) = c_0$

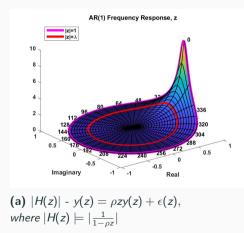
and unconditional moments

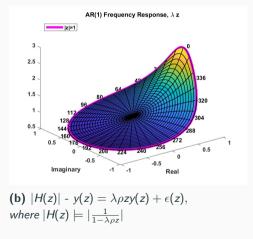
$$IFFT(|x(z)|^2\sigma_{\epsilon}^2)_{|z|=1} = \sigma_x^2$$

where σ_{ϵ}^2 is the variance of ϵ_t .

For 0 < λ < 1, more distant (lower frequency) movements' contribution to moments reduced.

Scaling in the z-domain: AR(1)





A Comparison of the Phillips Curves: Sticky Price and Sticky Information

The Sticky Price Phillips Curve

The Sticky Price Phillips Curve in the time domain:

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t$$

To get the frequency representation we use the Wiener-Kolmogorov prediction formula:

$$\mathcal{Z}\left\{E_t(x_{t+1})\right\} = \left[\frac{X(z)}{z}\right]_+ = \frac{1}{z}(X(z) - X(0))$$

Then, the Sticky Price Phillips Curve in the frequency domain:

$$\pi(z) = \beta \frac{1}{z}(\pi(z) - \pi_0) + \kappa y(z)$$

- Output gap at some frequency depends on inflation at the same frequencies
- no stickiness and dampening

The Sticky Information Phillips Curve in the frequency domain

Sticky Information Phillips Curve in the time domain

$$\pi_t = \frac{1-\lambda}{\lambda} \xi y_t + (1-\lambda) \sum_{i=0}^{\infty} \lambda^i E_{t-i-1}[\pi_t + \xi(y_t - y_{t-1})]$$

 \rightarrow Inflation depends on output, past expectations of current inflation and past expectations of current output growth.

Sticky Information Phillips Curve in the frequency domain

$$\pi(\lambda z) = \frac{1-\lambda}{\lambda} \xi y(z) + \xi (1-\lambda z) y(\lambda z)$$

 \rightarrow Inflation in the dampened frequency depends on output in the regular frequency and output in the dampened frequency

The Sticky Information Phillips Curve in the frequency domain

The SIPC in the frequency domain gives a recursive representation:

$$y(z) = \frac{\lambda}{\xi} \left(\frac{1}{1 - \lambda z}\right) \pi(\lambda z) + \lambda y(\lambda z)$$
(4)

which holds for all frequencies ω resp. $z \ (= e^{i\omega})$.

- Output gap at some frequency depends on output gap and inflation at dampened frequencies
- λ introduces stickiness in the frequency domain: If the fraction of firms with an info update is low (high), output gap is driven more strongly by inflation at low (high) frequencies
- Output gap depends only on inflation at higher frequencies: vertical SIPC in the long run

Monetary policy implications

Following Whiteman (1983)

- Impact response of forward looking variables will be pinned down
- by setting the residue of their z-transform to zero at removable singularities inside the unit circle

For example the solution for y_t is a function y(z) analytic on the unit disk:

$$y_t = \alpha E_t y_{t+1} + \epsilon_t \quad \stackrel{z}{\rightarrow} \quad y(z) = \alpha \frac{1}{z} \left(y(z) - y_0 \right) + 1 \quad \Rightarrow \quad y(z) \quad = \left(1 - \frac{1}{\alpha} z \right)^{-1} \left(y_0 - \frac{z}{\alpha} \right)$$

If $|\alpha| < 1$, then for $z = \alpha$ there is a removable singularity inside the unit circle and we can solve for a boundary condition on y_0

$$\lim_{z \to \alpha} \left(1 - z \frac{1}{\alpha} \right) y(z) = 0 \quad \to \quad y_0 = 1$$

Determinacy of the Sticky Price Model

$$\left(\begin{bmatrix} -\beta & 0 \\ \sigma & 1 \end{bmatrix} - z \begin{bmatrix} -1 & \kappa \\ \sigma \phi_{\pi} & 1 + \sigma \phi_{y} \end{bmatrix} \right) \begin{bmatrix} \pi(z) \\ y(z) \end{bmatrix} = \begin{bmatrix} -\beta & 0 \\ \sigma & 1 \end{bmatrix} \begin{bmatrix} \pi_{0} \\ y_{0} \end{bmatrix}$$

Decoupling as follows gives two singularities $\lim_{z\to 1/\gamma_i}(1-z\gamma_i)w_i(z) = 0$, i = 1, 2 (Cauchy's residue theorem)

$$\begin{bmatrix} w_1(z) & w_2(z) \end{bmatrix}' = V^{-1} \begin{bmatrix} \pi(z) & y(z) \end{bmatrix}'$$

which pins down initial conditions π_0 and y_0 .

• Singularities inside the unit circle if $1 - \frac{1-\beta}{\kappa}\phi_y < \phi_\pi$

 \Rightarrow Standard SP result, output gap targeting can substitute for inflation

Taylor principle sufficient but not necessary for determinacy

$$\begin{bmatrix} \pi(z) \\ y(z) \end{bmatrix} = \begin{bmatrix} \phi_{\pi} & \frac{1+\sigma\phi_{y}-\lambda}{\sigma} \\ 0 & \lambda \end{bmatrix} z \begin{bmatrix} \pi(z) \\ y(z) \end{bmatrix} + \begin{bmatrix} \frac{1-\lambda}{\lambda}\xi + \frac{1}{\sigma} \\ 0 \end{bmatrix} y_{0} + \begin{bmatrix} -\frac{\lambda}{\sigma\xi} & -\frac{\lambda}{\sigma}(1-\lambda z) \\ \frac{\lambda}{\xi} & \lambda(1-\lambda z) \end{bmatrix} \begin{bmatrix} \pi(\lambda z) \\ y(\lambda z) \end{bmatrix}$$

 $x(\lambda z)$: Irrelevant for determinacy (a property of $x(z)|_{|z|=1}$)

- Backward looking (recursive in frequency) SIPC gives one initial condition $\xi \frac{1-\lambda}{\lambda} y_0 = \pi_0$
- Of the two eigenvalues (λ and ϕ_{π}), one and only one must provide a removable singularity to pin down remaining condition
 - As the probability of no information update, 0 $<\lambda<$ 1, inside the unit circle
- Hence it must hold that $1 < \phi_{\pi}$

 \Rightarrow A stricter bound, output gap targeting cannot substitute for inflation

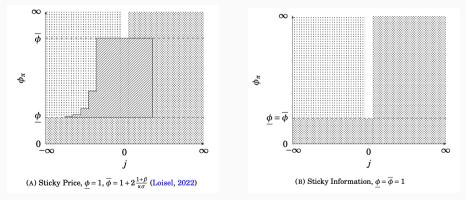
Taylor principle sufficient and necessary for determinacy

Extension: Extending to arbitrary horizons

Consider the following general Taylor rule:

$$R_t = \phi_{\pi} E_t \pi_{t+j} + \phi_y (\alpha_y E_t y_{t+m} (1 - \alpha_y) E_t \Delta y_{t+m})$$

Then the determinacy regions are given by:



Extension: Interest rate smoothing

Consider the more general Taylor rule

$$R_{t} = \rho_{R}R_{t-1} + (1 - \rho_{R})\left[\phi_{\pi}(\alpha_{\pi}\pi_{t} + (1 - \alpha_{\pi})E_{t}\pi_{t+1}) + \phi_{y}(\alpha_{y}y_{t} + (1 - \alpha_{y})\Delta y_{t})\right]$$

- $0 \le
 ho_R < 1$ allows for interest rate smoothing
- α_{π} : both contemporaneous ($\alpha_{\pi} = 1$) as well as future ($\alpha_{\pi} = 0$) inflation targeting
- α_y : output gap level ($\alpha_y = 1$) as well as output gap growth ($\alpha_y = 0$) targeting

The IS and Taylor rule in frequency representation

$$\begin{aligned} & [1 - (1 - \rho_R)\phi_{\pi}(1 - \alpha_{\pi}) - z(\rho_R(1 - \phi_{\pi}\alpha_{\pi}) + \phi_{\pi}\alpha_{\pi})] \pi(z) \\ &= [1 - (1 - \rho_R)\phi_{\pi}(1 - \alpha_{\pi}) - z\rho_R] \pi(0) - \frac{1 - z\rho_R}{\sigma} y(0) \\ &+ \left[\frac{1}{\sigma} + \phi_y(1 - \rho_R) - z\left(\frac{1 + \rho_R}{\sigma} + \phi_y(1 - \rho_R)(1 - \alpha_y)\right) + z^2 \frac{\rho}{\sigma}\right] y(z) \end{aligned}$$

ightarrow This posits a relation between $\pi(z)$ and y(z)

Sticky Price Determinacy Sticky Price Phillips curve

$$\left(1-\beta\frac{1}{z}\right)\pi(z)=-\beta\frac{1}{z}\pi_{0}+\kappa y(z)$$

- posits a long-run $(|z\models 1)$ tradeoff between inflation and the output gap
- fragile, specification specific determinacy bounds
 → difficult to derive determinacy bounds with the general Taylor rule here
- Taylor principle not directly relevant

Extension: Determinacy Sticky Information Model

Sticky Information Determinacy Sticky Information Phillips curve

$$y(z) = \frac{\lambda}{\xi} \frac{1}{1 - \lambda z} \pi(\lambda z) + \lambda y(\lambda z) = \frac{1}{\xi} \sum_{j=1}^{\infty} \frac{\lambda^j}{1 - \lambda^j z} \pi(\lambda^j z)$$

- long-run (|z|=1) tradeoff between inflation and the output gap
- Recursive in frequency SIPC gives one initial condition $\xi \frac{1-\lambda}{\lambda} y_0 = \pi_0$
- Removable singularity must be in the IS + Taylor rule w.r.t. inflation

$$\lim_{\mathbf{z} \to \gamma} \left[1 - (1 - \rho_R)\phi_\pi (1 - \alpha_\pi) - \mathbf{z}(\rho_R (1 - \phi_\pi \alpha_\pi) + \phi_\pi \alpha_\pi)\right] \pi(\mathbf{z}) = 0$$

Is relevant for determinacy if and only if

$$|\gamma \models \left| \frac{1 - (1 - \rho_R)\phi_\pi(1 - \alpha_\pi)}{\rho_R(1 - \phi_\pi \alpha_\pi) + \phi_\pi \alpha_\pi} \right| < 1$$

• No amount or type of output targeting can replace necessary focus on inflation!

Conclusion

• How can we analyze the SI model?

 \rightarrow Derive a recursive representation in the frequency domain by applying the z-transform

- Benefits of analyzing models with lagged expectations in the frequency domain:
 - No need to extend the model's state-space
 - No need to solve for an infinite sequence of undetermined $MA(\infty)$ coefficients
 - Allows for a closed form results
 - Possible to obtain conditions on monetary policy to ensure determinacy
 - \rightarrow implications for stabilization of an economy
- Implications for Monetary policy:
 - Cannot substitute a reaction to real conditions for a reaction to inflation as in SP model!

Thank you!

References i

- An, Zidong, Salem Abo-Zaid, and Xuguang Simon Sheng (2023). "Inattention and the impact of monetary policy". In: *Journal of Applied Econometrics*.
- Andrade, Philippe and Hervé Le Bihan (2013). "Inattentive professional forecasters". In: Journal of Monetary Economics 60.8, pp. 967–982.
- Angeletos, George-Marios and Jennifer La'O (2020). "Optimal monetary policy with informational frictions". In: *Journal of Political Economy* 128.3, pp. 1027–1064.
- Ball, Laurence, N Gregory Mankiw, and Ricardo Reis (2005). "Monetary policy for inattentive economies". In: *Journal of monetary economics* 52.4, pp. 703–725.
- Bernstein, Joshua and Rupal Kamdar (2023). "Rationally inattentive monetary **policy**". In: *Review of Economic Dynamics* 48, pp. 265–296.

References ii

- Branch, William A (2007). "Sticky information and model uncertainty in survey data on inflation expectations". In: Journal of Economic Dynamics and Control 31.1, pp. 245–276.
- Calvo, Guillermo A. (1983). "Staggered Prices in a Utility-Maximizing Framework". In: Journal of Monetary Economics 12.3, pp. 383–398.
- Chou, Jenyu, Joshy Easaw, and Patrick Minford (2023). "Does inattentiveness matter for DSGE modeling? An empirical investigation". In: Economic Modelling 118, p. 106076.
- Coibion, Olivier and Yuriy Gorodnichenko (2015). "Information rigidity and the expectations formation process: A simple framework and new facts". In: *American Economic Review* 105.8, pp. 2644–2678.

References iii

- Cornand, Camille and Paul Hubert (2022). "Information frictions across various types of inflation expectations". In: *European Economic Review* 146, p. 104175.
- Huo, Zhen and Naoki Takayama (2023). "Rational Expectations Models with Higher-Order Beliefs". In: Available at SSRN 3873663.
- Iovino, Luigi, Jennifer La'O, and Rui Mascarenhas (2022). "Optimal monetary policy and disclosure with an informationally-constrained central banker". In: *Journal of Monetary Economics* 125, pp. 151–172.
- Jurado, Kyle (2023). "Rational inattention in the frequency domain". In: *Journal of Economic Theory*, p. 105604.
- Kasa, Kenneth (2000). "Forecasting the Forecasts of Others in the Frequency Domain". In: Review of Economic Dynamics 3.4, pp. 726–756.

References iv

- Kiley, Michael T (2007). "A quantitative comparison of sticky-price and sticky-information models of price setting". In: Journal of Money, Credit and Banking 39, pp. 101–125.
- Klein, Paul (2000). "Using the Generalized Schur Form to Solve a Multivariate Linear Rational Expectations Model". In: Journal of Economic Dynamics and Control 24.10, pp. 1405–1423.
- Link, Sebastian et al. (2023). **"Information frictions among firms and households".** In: *Journal of Monetary Economics.*
- Mankiw, N. Gregory and Ricardo Reis (2002). "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve". In: *The Quarterly Journal of Economics* 117.4, pp. 1295–1328.

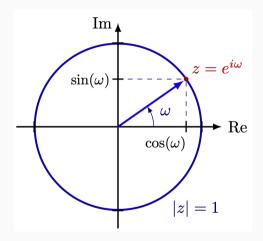
References v

- Mankiw, N Gregory and Ricardo Reis (2007). "Sticky information in general equilibrium". In: Journal of the European Economic Association 5.2-3, pp. 603–613.
- Meyer-Gohde, Alexander (2010). "Linear Rational-Expectations Models with Lagged Expectations: A Synthetic Method". In: Journal of Economic Dynamics and Control 34.5, pp. 984–1002.
- Nason, James M and Gregor W Smith (2021). "Measuring the slowly evolving trend in US inflation with professional forecasts". In: Journal of Applied Econometrics 36.1, pp. 1–17.
- Roth, Christopher and Johannes Wohlfart (2020). "How do expectations about the macroeconomy affect personal expectations and behavior?" In: Review of Economics and Statistics 102.4, pp. 731–748.

- Trabandt, Mathias (2007). "Sticky information vs. sticky prices: A horse race in a DSGE framework". In: *Riksbank Research Paper Series* 209.
- Whiteman, Charles H. (1983). Linear Rational Expectations Models: A User's Guide. Minneapolis, MN: University of Minnesota Press.

Appendix

Unit circle frequency domain



The Wiener-Kolmogorov prediction formula for lagged expectations provides the following representation:

$$\mathcal{Z}\{E_{t-i}[x_t]\} = z^i \left[\frac{X(z)}{z^i}\right]_+ = X(z) - \sum_{j=0}^i X^j(0) z^j$$
(5)

where $X^{j}(0)$ is the j'th derivative of X(z) evaluated at the origin and + is the annihilation operator.

Phillips Curve in the z-domain

The Sticky Information Phillips Curve in the time domain is given by:

$$\pi_t = \frac{1-\lambda}{\lambda} \xi y_t + (1-\lambda) \sum_{i=0}^{\infty} \lambda^i E_{t-i-1} [\pi_t + \xi (y_t - y_{t-1})]$$
(6)

Using the Wiener-Kolmogorov prediction formula for lagged expectations, the sticky information Phillips curve can be expressed in the frequency domain as:

$$\pi(z) = \frac{1-\lambda}{\lambda} \xi y(z) + (1-\lambda) \sum_{i=0}^{\infty} \lambda^{i} \left[\pi(z) - \sum_{j=0}^{i} \pi^{j}(0) z^{j} + \xi(1-z) \left(y(z) - \sum_{j=0}^{i} y^{j}(0) z^{j} \right) \right]$$
(7)

Phillips Curve in the z-domain

The infinite sums in (7) can be resolved by noting that:

$$\sum_{i=0}^{\infty} \lambda^i \left[x(z) - \sum_{j=0}^i x_j z^j \right] = \frac{1}{1-\lambda} x(z) - \sum_{i=0}^{\infty} \lambda^i \sum_{j=0}^i x_j z^j$$
(8)

$$=\frac{1}{1-\lambda}x(z)-\sum_{j=0}^{\infty}\sum_{i=j}^{\infty}x_{j}z^{j}\lambda^{i}$$
(9)

$$=\frac{1}{1-\lambda}x(z)-\sum_{j=0}^{\infty}\sum_{i=0}^{\infty}\lambda^{i}x_{j}z^{j}\lambda^{j}$$
(10)

$$=\frac{1}{1-\lambda}x(z)-\sum_{j=0}^{\infty}\frac{1}{1-\lambda}\lambda^{j}x_{j}z^{j}\lambda^{j}$$
(11)

$$=\frac{1}{1-\lambda}\left(x(z)-x(\lambda z)\right) \tag{12}$$

In the time domain, a recursive representation of the lagged expectations of the endogenous variables is given by:

$$(1-\lambda)\sum_{i=0}^{\infty}\lambda^{i}E_{t-i-1}[x_{t}], \quad x_{t} = \left(\sum_{j=0}^{\infty}x_{j}z^{j}\right)\epsilon_{t}$$
(13)
$$= (1-\lambda)\left(E_{t-1}[x_{t}] + \lambda E_{t-2}[x_{t}] + \lambda^{2}E_{t-3}[x_{t}] + ...\right)$$
(14)

Applying the Wiener-Kolmogorov prediction formula to the lagged expectations, we get the frequency domain representation as:

$$(1 - \lambda) (x(z) - x_0 + \lambda(x(z) - x_0 - zx_1) + \lambda^2 (x(z) - x_0 - zx_1 - z^2 x_2) + ...)$$

= $x(z) - \sum_{j=0}^{\infty} \lambda^j z^j x_j = x(z) - x(\lambda z)$

Phillips Curve in the z-domain

Hence, the lagged expectations in (14) can be transformed from the time into the frequency domain as:

$$(1-\lambda)\sum_{j=0}^{\infty}\lambda^{j}E_{t-i-1}[x_{t-1}] = (1-\lambda)\left(\frac{z}{1-\lambda}x(z) - \frac{\lambda z}{1-\lambda}x_{0} - \frac{(\lambda z)^{2}}{1-\lambda}x_{1} - \dots\right)$$
$$= zx(z) - \lambda zx(\lambda z)$$

Applying the z-transform we get the following representation of the Phillips curve:

$$\pi(z) = \xi\left(\frac{1-\lambda}{\lambda}\right) y(z) + \pi(z) - \pi(\lambda z) + \xi(1-z)y(z) - \xi(1-\lambda z)y(\lambda z)$$

such that

$$\xi\left(\frac{1}{\lambda}-z\right)y(z) = \pi(\lambda z) + \xi(1-\lambda z)y(\lambda z)$$
(15)

Definition: Analytic function:

A function f(z) is said to be analytic in a region \mathcal{R} of the complex plane if f(z) has a derivative at each point of \mathcal{R} and if f(z) is single valued.

Theorem:

If f(z) is analytic at a point z, then the derivative f(z) is continuous at z.

Definition: Singularity

A singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity.

For example, the function $f(x) = \frac{1}{x}$ has a singularity at x = 0, where the value of the function is not defined, as involving a division by zero.

Scaling in the z-domain: ARMA(2,2)

